\(\sqrt{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

Vì \(\sqrt{x}\ge0\forall x\)

=> 2 - \(\sqrt{x}\le2\)

Dấu "=" xảy ra <=> \(\sqrt{x}\)= 0 <=> x = 0

Vậy maxP = 2 <=> x = 0

1 tháng 10 2020

Ta có 

\(\sqrt{x}\ge0\forall x\)   

\(-\sqrt{x}\le0\)   

\(2-\sqrt{x}\le2\)   

Dấu = xảy ra 

\(\Leftrightarrow\sqrt{x}=0\) 

\(x=0\) 

Vậy GTLN của P là 2 khi và chỉ khi x = 0 

15 tháng 11 2018

1, ĐKXĐ: x\(\ge0\);x\(\ne1\)

Rút gọn P với \(x\ge0;x\ne1\)ta có

P=\(\dfrac{-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\sqrt{x}+0,5}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)}{x-\sqrt{x}+1}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-x\sqrt{x}+x-\sqrt{x}+0,5x-0,5\sqrt{x}+0,5+x\sqrt{x}-x-0,5x+0,5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

=\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

15 tháng 11 2018

2, Thay x=7-4\(\sqrt{3}\)thỏa mãn đk vào P ta có:

P\(=\dfrac{7-4\sqrt{3}-\sqrt{7-4\sqrt{3}}+1}{\sqrt{7-4\sqrt{3}}}\)

=\(\dfrac{7-4\sqrt{3}-\sqrt{\left(\sqrt{3}-2\right)^2}+1}{\sqrt{\left(\sqrt{3}-2\right)^2}}\)

=\(\dfrac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}\)

\(=\dfrac{6-3\sqrt{3}}{2-\sqrt{3}}=12+6\sqrt{3}-6\sqrt{3}-9\)=3

11 tháng 7 2018

Từ giả thiết: \(x+y=4\Leftrightarrow x=4-y\)

Khi đó ta có: \(H=\sqrt{4-y+1}+\sqrt{y-2}\)

\(H=\sqrt{5-y}+\sqrt{y-2}\)

Áp dụng bđt Bunhiacopxki:

\(H^2=\left(\sqrt{5-y}+\sqrt{y-2}\right)^2\)

\(\le\left(1^2+1^2\right)\left(5-y+y-2\right)=6\)

\(\Leftrightarrow H\le\sqrt{6}\)

Dấu "=" xảy ra khi: \(y=\dfrac{7}{2}\). Dựa vào điều kiện \(x+y=4\) suy ra được \(x=\dfrac{1}{2}\)

Vậy \(max_H=\sqrt{6}\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{7}{2}\right)\)

11 tháng 7 2018

Ta có :

\(H=\sqrt{x+1}+\sqrt{y-2}\)

\(\Leftrightarrow H^2=\left(\sqrt{x+1}+\sqrt{y-2}\right)^2\)

Theo BĐT Bu nhi a cốp xki ta có :

\(H^2=\left(\sqrt{x+1}+\sqrt{y-2}\right)^2\le\left(1^2+1^2\right)\left(x+1+y-2\right)=6\)

\(\Leftrightarrow H\le\sqrt{6}\)

Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}\sqrt{x+1}=\sqrt{y-2}\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)

Vậy GTLN của H là \(\sqrt{6}\) khi \(x=\dfrac{1}{2}\)\(y=\dfrac{7}{2}\)

Wish you study well !!!

8 tháng 7 2017

a)  \(3\sqrt{x}-x=-\left(x-3\sqrt{x}+\frac{9}{4}-\frac{9}{4}\right)=-\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

GTLN là 9/4 tại  \(\sqrt{x}-\frac{3}{2}=0\)  \(\Leftrightarrow x=\frac{9}{4}\)

b)  \(x\sqrt{3-x^2}=\sqrt{x^2\left(3-x^2\right)}\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)

GTLN là 3/2 tại  \(x^2=3-x^2\)  \(\Leftrightarrow x=\frac{\sqrt{6}}{2}\)

15 tháng 9 2016

Để M xác định thì \(x^2\le5\Leftrightarrow-\sqrt{5}\le x\le\sqrt{5}\)

Ta có : \(M^2=\left(2.x+1.\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\)

\(\Rightarrow-5\le M\le5\)

+) Max M = 5 <=> \(\hept{\begin{cases}\frac{x}{\sqrt{5-x^2}}=2\\-\sqrt{5}\le x\le\sqrt{5}\end{cases}}\) \(\Leftrightarrow x=2\)

Mặt khác : từ điều kiện xác định ta có \(x\ge-\sqrt{5}\)

\(\Rightarrow\sqrt{5-x^2}\ge0\) \(\Rightarrow M\ge-2\sqrt{5}\)

Dấu "=" xảy ra khi \(x=-\sqrt{5}\)

Vậy Min M = \(-2\sqrt{5}\) \(\Leftrightarrow x=-\sqrt{5}\)

19 tháng 5 2017

Bấm nhầm nút gửi

\(A=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)

Điều kiện

\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\sqrt{5}\le x\le\sqrt{5}\\A\ge2x\end{cases}}\)

\(\Rightarrow A\ge-2\sqrt{5}\) (1)

Bình phương 2 vế ta được

\(5x^2-4Ax+A^2-5=0\)

Để phương trình theo x có nghiệm thì 

\(\Delta'=\left(2A\right)^2-4.\left(A^2-5\right).5\ge0\)

\(\Leftrightarrow100-16A^2\ge0\)

\(\Leftrightarrow A\le\frac{5}{2}\)(2)

Từ (1) và (2)  \(\Rightarrow-2\sqrt{5}\le A\le\frac{5}{2}\)

19 tháng 5 2017

\(A=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)

Điều kiện

\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)

19 tháng 8 2016

Ta có: \(A^2=\left(\sqrt{x-1}+\sqrt{3-x}\right)^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

\(A^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\le2+x-1+3-x=4\) (BĐT Cô - si)

Vì \(A^2\le4\) nên \(A\le\sqrt{4}=2\)

Max A = 2 <=> x-1=3-x <=> x=1

19 tháng 8 2016

CTV kiểu gì đây ??? Nguyễn Hoàng Tiến ko xứng đáng chút nào!