![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+2}{x^2+4}\in Z\Rightarrow x+2⋮x^2+4\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)⋮x^2+4\)
\(\Rightarrow x^2-4⋮x^2+4\)
Mà \(x^2+4⋮x^2+4\)
\(\Rightarrow\left(x^2+4\right)-\left(x^2-4\right)⋮x^2+4\)
\(\Rightarrow8⋮x^2+4\)
\(\Rightarrow x^2+4\inƯ\left(8\right)\)
Mà \(x^2+4\ge0+4=4\Rightarrow x^2+4\in\left\{4;8\right\}\)
\(\Rightarrow x^2\in\left\{0;4\right\}\)
\(\Rightarrow x\in\left\{-2;0;2\right\}\)
Với \(x=-2\Rightarrow\frac{x+2}{x^2+4}=\frac{0}{4+4}=0\in Z\left(TM\right)\)
Với \(x=0\Rightarrow\frac{x+2}{x^2+4}=\frac{2}{0+4}=\frac{1}{2}\notin Z\left(0TM\right)\)
Với \(x=2\Rightarrow\frac{x+2}{x^2+4}=\frac{4}{4+4}=\frac{1}{2}\notin Z\left(0TM\right)\)
Do đó \(x=-2\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E=-\left(x^4+10x^2+9+6x^3+6x\right)+24\)
\(=-\left[\left(x^2+9\right)\left(x^2+1\right)+6x\left(x^2+1\right)\right]+24\)
\(=-\left(x^2+1\right)\left(x^2+9+6x\right)+24\)
\(=-\left(x^2+1\right)\left(x+3\right)^2+24\le24\)
\(E_{max}=24\) khi \(x=-3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = -(x2+6x-11)
=-(x2+6x+9-20)
=-(x+3)2 + 20 \(\le20\)
vậy min A = 20
dấu = xảy ra khi x = -3
câu B bạn xem có nhầm đề hay thiếu gì k thì bổ sung nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
P = -4 -x^2 + 6x
P = - (x^2 -6x+4)
P = - (x^2 - 2.3.x + 9 - 5)
P = -[(x-3)^2 - 5]
P = - (x-3)^2 + 5 =< 5
Để P GTLN
=> -(x-3)^2 + 5 = 5
-(x-3)^2 = 0
x- 3 = 0
x = 3
=> GTLN của P = 5 tại x = 3
Ta có: \(P=-4-x^2+6x=-x^2+6x-4=-\left(x^2-6x+4\right)\)
\(=-\left(x^2-6x+9-5\right)\)
\(=-\left(x^2-6x+9\right)+5\)
\(=-\left(x-3\right)^2+5\le5\forall x\)
Dấu = xảy ra khi: \(-\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy GTLN của P là 5 tại x = 3
=.= hok tốt!!