K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10

Bài 1: $x$ có thêm điều kiện gì không bạn?

AH
Akai Haruma
Giáo viên
12 tháng 10

Bài 2:

$P=\frac{x^2+y^2+3}{x^2+y^2+2}=\frac{(x^2+y^2+2)+1}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}$
Ta thấy:

$x^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow x^2+y^2+2\geq 2$

$\Rightarrow P\leq 1+\frac{1}{2}=\frac{3}{2}$
Vậy GTNN của $P$ là $\frac{3}{2}$
Giá trị này đạt tại $x^2=y^2=0\Leftrightarrow x=y=0$

a) Ta có: \(A=7x\left(x-5\right)+3\left(x-2\right)\)

\(=7x^2-35x+3x-6\)

\(=7x^2-32x-6\)

Thay x=0 vào biểu thức \(A=7x^2-32x-6\), ta được:

\(7\cdot0^2-32\cdot0-6\)

\(=-6\)

Vậy: -6 là giá trị của biểu thức \(A=7x\left(x-5\right)+3\left(x-2\right)\) tại x=0

b) Ta có: \(B=4x\left(2x-3\right)-5x\left(x-2\right)\)

\(=8x^2-12x-5x^2+10x\)

\(=3x^2-2x\)

Thay x=2 vào biểu thức \(B=3x^2-2x\), ta được:

\(3\cdot2^2-2\cdot2=3\cdot4-4=12-4=8\)

Vậy: 8 là giá trị của biểu thức \(B=4x\left(2x-3\right)-5x\left(x-2\right)\) tại x=2

c) Ta có: \(C=a^2\left(a+b\right)-b^2\left(a^2-b^2\right)\)

\(=a^3+a^2b-b^2a^2+b^4\)

Thay a=1 và b=1 vào biểu thức \(C=a^3+a^2b-b^2a^2+b^4\), ta được:

\(1^3+1^2\cdot1-1^2\cdot1^2+1^4\)

=1+1-1+1

=2

Vậy: 2 là giá trị của biểu thức \(C=a^2\left(a+b\right)-b^2\left(a^2-b^2\right)\) tại a=1 và b=1

d) Ta có: \(D=m\left(m-n+1\right)-n\left(n+1-m\right)\)

\(=m^2-mn+m-n^2-n+mn\)

\(=m^2-n^2+m-n\)

Thay \(m=-\frac{2}{3}\)\(n=-\frac{1}{3}\) vào biểu thức \(D=m^2-n^2+m-n\), ta được:

\(\left(-\frac{2}{3}\right)^2-\left(\frac{-1}{3}\right)^2+\frac{-2}{3}-\frac{-1}{3}\)

\(=\frac{4}{9}-\frac{1}{9}-\frac{1}{3}\)

\(=\frac{1}{3}-\frac{1}{3}=0\)

Vậy: 0 là giá trị của biểu thức \(D=m\left(m-n+1\right)-n\left(n+1-m\right)\) tại \(m=-\frac{2}{3}\)\(n=-\frac{1}{3}\)

23 tháng 4 2020

1. \(\frac{x+2}{5}=\frac{3x-2}{2}\)

=> 2(x + 2) = 5(3x - 2)

=> 2x + 4 = 15x - 10

=> 2x - 15x = -10 - 4

=> -13x = -14

=> x = 13/4

23 tháng 4 2020

Bài 1: \(\frac{x+2}{5}=\frac{3x-2}{2}\)

<=> 2x+4=15x-10

<=> 2x-15x=-10-4

<=> -13x=-14

<=> x=\(\frac{14}{13}\)

Bài 2: xy+2x+y=0

<=> (xy+2x)+(y+2)=2

<=> x(y+2)+(y+2)=2

<=> (y+2)(x+1)=2

Vì x,y nguyên => y+2; x+1 nguyên => y+2; x+1 nguyên 

=> y+2; x+1 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

ta có bảng

x+1-2-112
x-3-201
y+2-1-221
y-3-40-1
2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

a: Để 2x+1/5=2

thì 2x+1=10

=>2x=9

hay x=9/2

Để (2x+1)/5=-2

thì 2x+1=-10

=>2x=-11

hay x=-11/2

Để (2x+1)/5=0 thì 2x+1=0

hay x=-1/2

Để (2x+1)/5=4 thì 2x+1=20

=>2x=19

hay x=19/2

b: Để (x+1)/7=0 thì x+1=0

hay x=-1

Để (3x+3)/5=0 thì 3x+3=0

hay x=-1