\(H=\sqrt{x+1}+\sqrt{y-2}\) biết x + y =4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Từ giả thiết: \(x+y=4\Leftrightarrow x=4-y\)

Khi đó ta có: \(H=\sqrt{4-y+1}+\sqrt{y-2}\)

\(H=\sqrt{5-y}+\sqrt{y-2}\)

Áp dụng bđt Bunhiacopxki:

\(H^2=\left(\sqrt{5-y}+\sqrt{y-2}\right)^2\)

\(\le\left(1^2+1^2\right)\left(5-y+y-2\right)=6\)

\(\Leftrightarrow H\le\sqrt{6}\)

Dấu "=" xảy ra khi: \(y=\dfrac{7}{2}\). Dựa vào điều kiện \(x+y=4\) suy ra được \(x=\dfrac{1}{2}\)

Vậy \(max_H=\sqrt{6}\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{7}{2}\right)\)

11 tháng 7 2018

Ta có :

\(H=\sqrt{x+1}+\sqrt{y-2}\)

\(\Leftrightarrow H^2=\left(\sqrt{x+1}+\sqrt{y-2}\right)^2\)

Theo BĐT Bu nhi a cốp xki ta có :

\(H^2=\left(\sqrt{x+1}+\sqrt{y-2}\right)^2\le\left(1^2+1^2\right)\left(x+1+y-2\right)=6\)

\(\Leftrightarrow H\le\sqrt{6}\)

Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}\sqrt{x+1}=\sqrt{y-2}\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)

Vậy GTLN của H là \(\sqrt{6}\) khi \(x=\dfrac{1}{2}\)\(y=\dfrac{7}{2}\)

Wish you study well !!!

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

18 tháng 8 2019

ĐK: \(x\ge-1;y\ge0\)

\(x+y+\sqrt{8y}+5=4\sqrt{x+1}+\sqrt{2}\sqrt{xy+y}\)

\(\Leftrightarrow\)\(\left(x+1-4\sqrt{x+1}+4\right)-\left(\sqrt{x+1}\sqrt{2y}-2\sqrt{2y}\right)+y=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-\sqrt{2y}\left(\sqrt{x+1}-2\right)+y=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-2\sqrt{\frac{y}{2}}\left(\sqrt{x+1}-2\right)+\frac{y}{2}+\frac{y}{2}=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}=0\)

Có: \(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}\ge0\) ( do \(y\ge0\) ) 

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x+1}-\frac{y}{2}-2=0\\\frac{y}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

... 

18 tháng 8 2019

\(\frac{1}{x}+\frac{25}{y}\ge\frac{\left(1+5\right)^2}{x+y}\ge\frac{6^2}{6}=6\)

Dấu "=" xảy ra khi \(x+y=6\) và \(\frac{1}{x}=\frac{5}{y}=\frac{1+5}{x+y}=\frac{6}{6}=1\)\(\Rightarrow\)\(x=1;y=5\)

30 tháng 9 2016

Ta có A = \(4\sqrt{x}+3\sqrt{1-x}\)\(\le1\sqrt{\left(4^2+3^2\right)\left(x+1-x\right)}=5\)

Bên cạnh đó \(0\le x\le1\)

=> A\(\ge3\)

Vậy GTNN là A = 3 khi x = 0, GTLN là A = 5 khi x = \(\frac{16}{25}\)

15 tháng 11 2018

1, ĐKXĐ: x\(\ge0\);x\(\ne1\)

Rút gọn P với \(x\ge0;x\ne1\)ta có

P=\(\dfrac{-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\sqrt{x}+0,5}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)}{x-\sqrt{x}+1}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-x\sqrt{x}+x-\sqrt{x}+0,5x-0,5\sqrt{x}+0,5+x\sqrt{x}-x-0,5x+0,5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

=\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

15 tháng 11 2018

2, Thay x=7-4\(\sqrt{3}\)thỏa mãn đk vào P ta có:

P\(=\dfrac{7-4\sqrt{3}-\sqrt{7-4\sqrt{3}}+1}{\sqrt{7-4\sqrt{3}}}\)

=\(\dfrac{7-4\sqrt{3}-\sqrt{\left(\sqrt{3}-2\right)^2}+1}{\sqrt{\left(\sqrt{3}-2\right)^2}}\)

=\(\dfrac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}\)

\(=\dfrac{6-3\sqrt{3}}{2-\sqrt{3}}=12+6\sqrt{3}-6\sqrt{3}-9\)=3