Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có :\(A=x\left(x-6\right)=x^2-6x\)
\(=x^2-6x+9-9\)
\(=\left(x-3\right)^2-9\)
Vì: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\)\(\left(x-3\right)^2-9\ge-9\forall x\)
Hay: \(A\ge-9\forall x\)
Dấu = xảy ra khi (x-3)^2=0
<=>x=3
Vậy Min A= -9 tại x=3
b,Ta có: \(B=-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(=-3\left(x^2+3x+\frac{7}{3}\right)\)
\(=-3\left[\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{12}\right]\)
\(=-3\left[\left(x+\frac{3}{2}\right)^2+\frac{1}{12}\right]\)
\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
Vì: \(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\forall x\)
Hay \(B\le\frac{-1}{4}\forall x\)
Dấu = xảy ra khi \(-3\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy Max B=-1/4 tại x=-3/2
a) \(A=x\left(x-6\right)=x^2-6x+9-9=\left(x-3\right)^2-9\ge-9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=3\)
Vậy Min A = -9 khi x = 3
b) \(B=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+9x+20,25\right)+53,75\)
\(=-3\left(x+4,5\right)^2+53,75\le53,75\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-4,5\)
Vậy Max B = 53,75 khi x = -4,5
\(R=-2\left(x^2-\dfrac{1}{2}x-\dfrac{1}{2}\right)=-2\left(x^2-2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\)
\(=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\forall x\)
Dấu '=' xảy ra khi x=1/4
B = - 3x(x + 3) - 7
= -3x2 - 9x - 7
= - 3(x2 + 2 . x . 3/2 + 9/4 - 9/4 + 7/3)
= -3[(x + 3/2)2 + 1/12]
(x + 3/2)2 lớn hơn hoặc bằng 0
(x + 3/2)2 + 1/12 lớn hơn hoặc bằng 1/12
- 3[(x + 3/2)2 + 1/12] nhỏ hơn hoặc bằng - 1/4
Vậy Max B = - 1/4 khi x = - 3/2.
Chúc bạn học tốt ^^
B=-3x(x+3)-7
=-3x2-9x-7
=-3(x2+3x+7/3)
=-3(x2+2*3/2x+9/4+1/12)
=-3(x+3/2)2-1/4
Với mọi x thuộc R, ta luôn có: (x+3/2)2>=0
suy ra: -3(x+3/2)2<=0
suy ra: -3(x+3/2)2-1/4<=0-1/4
suy ra: B<=-1/4
suy ra: GTNN của B bằng -1/4
khi x+3/2=0
suy ra x=-3/2
NẾU ĐÚNG CHO MK NHA
1) \(f\left(x\right)=-3x^2-12x+5\)
\(\Rightarrow f\left(x\right)=-3\left(x^2+4x\right)+5\)
\(\Rightarrow f\left(x\right)=-3\left(x^2+4x+4\right)+5+12\)
\(\Rightarrow f\left(x\right)=-3\left(x+2\right)^2+17\le17\left(-3\left(x+2\right)^2\le0,\forall x\right)\)
\(\Rightarrow GTLN\left(f\left(x\right)\right)=17\left(tạix=-2\right)\)
2) \(f\left(x\right)=-8x^2+20x\)\
\(\Rightarrow f\left(x\right)=-8\left(x^2+\dfrac{5}{2}x\right)\)
\(\Rightarrow f\left(x\right)=-8\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{25}{2}\)
\(\Rightarrow f\left(x\right)=-8\left(x+\dfrac{5}{4}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\left(-8\left(x+\dfrac{5}{4}\right)^2\le0,\forall x\right)\)
\(\Rightarrow GTLN\left(f\left(x\right)\right)=\dfrac{25}{2}\left(tạix=-\dfrac{5}{4}\right)\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 2 ≤ 2
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxA = 2 <=> x = -2
B = -x2 + 10x - 24 = -( x2 - 10x + 25 ) + 1 = -( x - 5 )2 + 1
-( x - 5 )2 ≤ 0 ∀ x => -( x - 5 )2 + 1 ≤ 1
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MaxB = 1 <=> x = 5
C = -x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4
-( x + 1/2 )2 ≤ 0 ∀ x => -( x + 1/2 )2 - 3/4 ≤ -3/4
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MaxC = -3/4 <=> x = -1/2
D = -3x2 - 3x - 3 = -3( x2 + x + 1/4 ) - 9/4 = -3( x + 1/2 )2 - 9/4
-3( x + 1/2 )2 ≤ 0 ∀ x => -3( x + 1/2 )2 - 9/4 ≤ -9/4
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
=> MaxD = -9/4 <=> x = -1/2
\(=-\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{37}{4}=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(D=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)
\(=-3\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\right]-7=-3\left(x+\frac{3}{2}\right)^2+\frac{27}{4}-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\) < \(-\frac{1}{4}\)
Dấu "=" xảy ra <=> \(-3\left(x+\frac{3}{2}\right)^2=0< =>x=-\frac{3}{2}\)
Vậy maxD=-1/4 khi x=-3/2