Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=-2\left(x^2-\dfrac{1}{2}x-\dfrac{1}{2}\right)=-2\left(x^2-2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\)
\(=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\forall x\)
Dấu '=' xảy ra khi x=1/4
Ta có
x4 – 6 x3 + ax2 + bx + 1 = (x2+cx+dx2+cx+d)2 với mọi x
<=> x4+x3.2c+x2(c2+2d)+x.2cd+d2x4+x3.2c+x2(c2+2d)+x.2cd+d2 = x4 – 6 x3 + ax2 + bx + 1 với mọi x
Giải phương trình tương đương ( đồng nhất thức )
=> c = -3 ; a = 11 ; b = -6 ; d =1
\(A=2x-2x^2-5\)
\(A=-2\left(x^2-x\right)-5\)
\(A=-2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}-5\)
\(A=-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\)
Có \(2\left(x-\frac{1}{2}\right)^2\ge0\)với mọi x
=> \(-2\left(x-\frac{1}{2}\right)^2\le0\)với mọi x
=> \(-2\left(x-\frac{1}{2}\right)^2-4\frac{1}{2}\le-4\frac{1}{2}\)với mọi x
=> \(A\le-4\frac{1}{2}\)với mọi x
Dấu "=" xảy ra <=> \(x-\frac{1}{2}=0\)<=> \(x=\frac{1}{2}\)
KL: \(A_{max}=-4\frac{1}{2}\)<=> \(x=\frac{1}{2}\)
2x - 2x2 - 5
= -2( x2 - x + 1/4 ) - 9/2
= -2( x - 1/2 )2 - 9/2 ≤ -9/2 ∀ x
Dấu "=" xảy ra <=> x = 1/2
Vậy GTLN của biểu thức = -9/2 <=> x = 1/2
a. \(A=4x-x^2+3=7-\left(x^2-4x\right)+4=7-\left(x-2\right)^2\le7\)
b.\(B=x-x^2=\frac{1}{4}-\left(x^2-x+\frac{1}{4}\right)=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
c.\(C=2x-2x^2-5=-\frac{9}{2}-2\left(x^2-x+\frac{1}{4}\right)=-\frac{9}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{9}{2}\)
Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\forall x\)
Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)
Nên : Pmin = 4 khi x = 1
b) Ta có Q = 2x2 - 6x = 2(x2 - 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
Ta có : |2x - 3| \(\ge0\forall x\in R\)
=> -|2x - 3| \(\le0\forall x\in R\)
Do đó : -|2x - 3| - 4 \(\le-4\forall x\in R\)
Vậy GTLN của biểu thức là : -4 khi x = \(\frac{3}{2}\)