K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

\(M=4x-x^2+3\)

\(=-x^2+4x+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7\)

Vì; \(-\left(x-2\right)^2+7\le7\forall x\)

=> Max M =7 tại \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Ta có: \(N=x-x^2=-x^2+x\)

\(=-x^2+x-\frac{1}{4}+\frac{1}{4}\)

\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)

=> Max N =1/4 tại \(-\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

=.= hok tốt!!

30 tháng 7 2018

a)\(M=4x-x^2+3\)

\(M=-x^2+4x+3\)

\(M=-x^2+4x-4+7\)

\(M=-\left(x-2\right)^2+7\le7.Với\forall x\in Q\)

Dấu "=" xảy ra khi x = 2

Vậy Max M = 7 <=> x = 2

b)\(N=x-x^2=-x^2+x\le x\)

Dấu "=" xảy ra khi x = 0

=> Max N = 0 <=> x = 0

\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)

Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

    Vậy A max là 7 chỉ khi x=-2

15 tháng 8 2020

b) \(7-x^2-y^2-2\left(x+y\right)\)

\(=7-x^2-y^2-2x-2y\)

\(=-x^2-2x-1-y^2-2y-1+9\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)

Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)

Vậy ...................

16 tháng 8 2016

khó hiểu quá 

16 tháng 8 2016

bn giải giúp mình đi

27 tháng 2 2022

\(A=\dfrac{6x^2+21x+22}{x^2+4x+4}\)

\(=\dfrac{6\left(x^2+4x+4\right)-3x-2}{x^2+4x+4}\)

\(=6+\dfrac{-3x-2}{\left(x+2\right)^2}\)

\(=6+\dfrac{-3\left(x+2\right)+4}{\left(x+2\right)^2}\)

\(=6-\dfrac{3}{x+2}+\dfrac{4}{\left(x+2\right)^2}\)

-Đặt \(a=\dfrac{1}{x+2}\) thì:

\(A=6-3a+4a^2=\left(2a\right)^2-2.2a.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{87}{16}=\left(2a-\dfrac{3}{4}\right)^2+\dfrac{87}{16}\ge\dfrac{87}{16}\)

\(A_{min}=\dfrac{87}{16}\)\(\Leftrightarrow\left(2a-\dfrac{3}{4}\right)^2=0\Leftrightarrow2a-\dfrac{3}{4}=0\Leftrightarrow2a=\dfrac{3}{4}\)

\(\Leftrightarrow2.\dfrac{1}{x+2}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{x+2}=\dfrac{3}{8}\Leftrightarrow x+2=\dfrac{8}{3}\Leftrightarrow x=\dfrac{2}{3}\)

27 tháng 2 2022

-Kết hợp phương pháp nhóm hạng tử với đặt ẩn phụ luôn. 

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

13 tháng 9 2016

(x-1/2)2 + (y + 3)2 -1/4 +10 -9

GTNN = 3/4

(giải theo pp học vnen)

12 tháng 12 2018

1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7 
 Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật

12 tháng 12 2018

2.ĐK: \(x\ne-1\)

 \(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)

Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)

Vậy GTNN của Q là 1 khi x = 1

1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)

Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy GTLN của B là 7 khi x = 2