\(y=\frac{a^2-2a+3}{3a^2-6a+8}\)

CẦN GẤP AI ĐÚNG...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Dùng miền giá trị:

\(y=B=\frac{a^2-2a+3}{3a^2-6a+8}\Leftrightarrow\left(3B-1\right)a^2-2a\left(3B-1\right)+\left(8B-3\right)=0\) (1)

+)Với B = 1/3 thì: x =....(tự tính)..

+)Với B khác 1/3 thì (1) là pt bậc 2:

(1) có nghiệm \(\Leftrightarrow\Delta'=\left(3B-1\right)^2-\left(3B-1\right)\left(8B-3\right)\ge0\)

\(\Leftrightarrow-15B^2+11B-2\ge0\Leftrightarrow\frac{1}{3}\le B\le\frac{2}{5}\)

Vậy...

12 tháng 3 2019

Biết đáp án trước rồi => Dễ 

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)

29 tháng 9 2019

a. \(8x\left(x-2017\right)-2x+4034=0\)

\(8x\left(x-2017\right)-2\left(x-2017\right)=0\)

\(\left(8x-2\right)\left(x-2017\right)=0\)

\(\Rightarrow TH1:8x-2=0\)

\(8x=2\)

\(x=\frac{1}{4}\)

\(TH2:x-2017=0\)

\(x=2017\)

Vậy \(x\in\left\{\frac{1}{4};2017\right\}\)

29 tháng 9 2019

Bài 1 

a) \(8x\left(x-2017\right)-2x+4034=0\)

\(\Rightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)

\(\Rightarrow\left(x-2017\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)

\(a,x^3-x^2-12x+45=0\)

\(\left(x-3\right)\left(x-3\right)\left(x+5\right)=0\)

\(x=3;3;-5\)

\(b,2x^3-5x^2+8x-5=0\)

\(\left(2x^2-3x+5\right)\left(x-1\right)=0\)

\(x=1\)

lm 1 câu đã chán ngắt , giải mấy câu nữa não tớ nổ bùmmm , tớ bt đây là trang web để hc nhưng tạo nên tiếng cười là chính nha ^^ 

11 tháng 11 2019

2

a

\(\left|2x+7\right|+\left|2x-1\right|=\left|2x+7\right|+\left|1-2x\right|\ge\left|2x+7+1-2x\right|=8\)

Dấu "=" xảy ra tại \(-\frac{7}{2}\le x\le\frac{1}{2}\)

3

\(3a^2+4b^2=7ab\)

\(\Leftrightarrow3a^2-7ab+4b^2=0\)

\(\Leftrightarrow\left(3a^2-3ab\right)+\left(4b^2-4ab\right)=0\)

\(\Leftrightarrow3a\left(a-b\right)-4b\left(a-b\right)=0\)

\(\Leftrightarrow\left(3a-4b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\3a=4b\end{cases}}\)

Làm nốt

18 tháng 11 2019

 \(a^3-a-1=0\)

\(\Rightarrow x^3=\left(a+1\right)\)

Ta có :

\(M=\frac{\left(a^2-1\right)\left(2a^2+3a+2\right)}{a^7}\)

\(M=\frac{\left(a+1\right)\left(a-1\right)\left(2a^2+3a+2\right)}{a^7}\)

\(M=\frac{a^3\left(a-1\right)\left(2a^2+3a+2\right)}{a^7}\)

\(M=\frac{\left(a-1\right)\left(2a^2+3a+2\right)}{a^4}\)

\(M=\frac{2a^3+3a^2+2a-2a^2-3a-2}{a^4}\)

\(M=\frac{2a^3+a^2-a-2}{a^4}\)

\(M=\frac{2\left(a+1\right)+a\left(a-1\right)-2}{a^4}\)

\(M=\frac{2a+2+a^2-a-2}{a^4}\)

\(M=\frac{2a+a^2-a}{a^4}\)

\(M=\frac{a\left(2+a-1\right)}{a^4}=\frac{a+1}{a^3}=\frac{a+1}{a+1}=1\)

Vậy...................

15 tháng 4 2020

giả sử P đạt GTNN khi a=x, b=y; c=z. khi đó ta có:

x,y,z>0 và 4x+3y+4z=22

ta thấy với a=x; b=y; c=z thì 

\(\frac{1}{3a}=\frac{1}{3x}=\frac{1}{3x^2};\frac{2}{b}=\frac{2}{y}=\frac{2}{y^2},\frac{3}{c}=\frac{3}{z}=\frac{3}{z^2}\)

do đó, các đánh giá sau sẽ đảm bảo được điều kiện đẳng thức

\(\hept{\begin{cases}\frac{1}{3a}+\frac{a}{3x^2}\ge2\sqrt{\frac{1}{3a}\cdot\frac{a}{3a^2}}=\frac{2}{3x}\\\frac{2}{b}+\frac{2b}{y^2}\ge2\sqrt{\frac{2}{b}\cdot\frac{2b}{y^2}}=\frac{4}{y}\\\frac{3}{c}+\frac{3c^2}{z}\ge2\sqrt{\frac{3}{c}\cdot\frac{3c}{z^2}}=\frac{6}{z}\end{cases}}\)

\(\Rightarrow\frac{1}{3a}\ge\frac{2}{3x}-\frac{a}{3x^2};\frac{2}{b}\ge\frac{4}{y}-\frac{2b}{y^2};\frac{3}{c}\ge\frac{6}{z}-\frac{3c}{z^2}\)

và như vậy, ta đã chuyển được các phân thức về dạng bậc nhất và thu được

\(P\ge a+b+c+\left(\frac{2}{3x}-\frac{a}{3x^2}\right)+\left(\frac{4}{y}-\frac{2b}{y^2}\right)+\left(\frac{6}{z}-\frac{3c}{z^2}\right)\)

\(=\left(1-\frac{1}{3x^2}\right)a+\left(1-\frac{2}{y^2}\right)b+\left(1-\frac{3}{z^2}\right)c+\frac{2}{3x}+\frac{4}{y}+\frac{6}{z}\)

vấn đề còn lại là ta phải chọn các số x,y,z thích hợp làm sao để có thể sử dụng được giả thiếu 4a+3b+4c=22

muốn vậy các hệ số của a,b,c trong đánh giá trên phải thành lập tỉ lệ 4:3:4 tức là

\(\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{1}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\)

vậy điểm rơi thực sự của bài toán chình là nghiệm của hệ phương trình \(\hept{\begin{cases}4x+3y+4z=22\\\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{2}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\end{cases}\left(1\right)}\)

giải hệ này ta tìm được x=1; y=2; z=3. khi đó ta có:

\(P\ge\left(1-\frac{1}{3}\right)a+\left(1-\frac{2}{2^2}\right)b+\left(1-\frac{3}{3^2}\right)c+\frac{2}{3}+\frac{4}{2}+\frac{6}{3}\)

\(=\frac{4a+3b+4c}{6}+\frac{14}{3}=\frac{22}{6}+\frac{14}{3}=\frac{25}{3}\)

đẳng thức xảy ra khi a=x=1; b=y=2 và c=z=3

24 tháng 5 2020

\(P=\frac{1}{a^2+a+1}\) ( với a khác 1 ) 

=> \(\frac{1}{P}=a^2+a+1=a^2+2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3.}{4}\ge\frac{3}{4}\) vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)

Dấu "=" xảy ra <=> \(\left(a+\frac{1}{2}\right)^2=0\Leftrightarrow a=-\frac{1}{2}\)( thỏa mãn )

Vậy GTNN của \(\frac{1}{P}=\frac{3}{4}\)đạt tại  a = - 1/2.

mệt rời o 

thông cảm 

hihi

Bài 7 

\(a,A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)

\(b,B=x^2-x+1\)

\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x=t\)

\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)

\(=t^2-36\)

\(\left(x^2+5x\right)^2-36\ge36\forall x\)

\(d,D=x^2+5y^2-2xy+4y-3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)