K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

\(A=\frac{3}{2x^2+2x+3}=\frac{3}{2x^2+2x+\frac{1}{2}+\frac{5}{2}}\)

\(=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Nên GTLN của A là \(\frac{6}{5}\) khi \(x=-\frac{1}{2}\)

1 tháng 9 2018

Ta có: \(A=\frac{3}{2x^2+2x+3}\)

\(A=\frac{3}{2x^2+2x+\frac{1}{2}+\frac{5}{2}}\)

\(A=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}\)

\(A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}\)

\(A=\frac{6}{5}\)

Nên GTLN của A là \(\frac{6}{5}\) khi \(x=-\frac{1}{2}\)

17 tháng 6 2021

\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)

dấu'=' xảy ra<=>x=1=>Max A=6

\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)

\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)

\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)

dấu"=" xảy ra<=>x=y=2=>Max B=10

\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

dấu'=' xảy ra<=>x=1,y=-3=>MinC=2

 

 

 

 

14 tháng 3 2019

\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)

\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)

\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)

\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)

\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)

7 tháng 10 2021

1) \(\Rightarrow16x^2+24x+9+9x^2-24x+16+4-25x^2=x\)

\(\Rightarrow x=29\)

2)

a) \(=x^2-9-x^2+6x-9=6x-18\)

b) \(=\left(3x-1+2x+1\right)^2=\left(5x\right)^2=25x^2\)

`@` `\text {Ans}`

`\downarrow`

`A= (2x - 3)^2 - (2x + 3)^2`

`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`

`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`

`= -6 * 4x`

`= -24x`

16 tháng 8 2023

`A=(2x-3)^2-(2x+3)^2`

`A=(2x-3-2x-3)(2x-3+2x+3)`

`A=-6.4x=-24x`

\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)

Để A đạt GTLN thì x2+3x+3 bé nhất

mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)

Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)

lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)

Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)

8 tháng 8 2019

\(\left(2x-1\right)^2+3\ge3\Rightarrow A=\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)

\(\text{Dấu = xảy ra khi }2x-1=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

\(\text{Vậy Max}A=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)

8 tháng 8 2019
  • GIẢI :

Ta có : \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow(2x-1)^2+3\ge3\)

\(\Rightarrow\frac{1}{\left(2x-1\right)^2+3}\le\frac{1}{3}\)

\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)

\(\Rightarrow\text{A}_{max}=\frac{5}{3}\).

Dấu "=" xảy ra khi : \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).

Vậy \(\text{A}_{max}=\frac{5}{3}\) khi \(x=\frac{1}{2}\).