K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

\(-x^2-y^2+xy+2x+2y=-\left[x^2-x\left(y+2\right)+\dfrac{1}{4}\left(y+2\right)^2\right]-\left(\dfrac{3}{4}y^2-3y+3\right)+4=-\left(x-\dfrac{1}{2}y-1\right)^2-\left(\dfrac{\sqrt{3}}{2}y-\sqrt{3}\right)^2+4\le4\)

\(max=4\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

27 tháng 9 2021

Thanks

 

26 tháng 3 2018

\(\text{Đặt: }A=-x^2-y^2+xy+2x+2y.\)

    \(\Rightarrow2A=-2x^2-2y^2+2xy+4x+4y=-\left(x^2-4x+4\right)-\left(y^2-y+4\right)-\left(x^2-2xy+y^2\right)+8\)

\(=8-\left(x-2\right)^2-\left(y-2\right)^2-\left(x-y\right)^2\)

24 tháng 8 2016

(x2/2 - xy + y2 /2) + (x2 /2 - 2x + 2) + (y/2 - 2y + 2) - 4 = (x/√2 - y √2)+ (x/√2 - √2)+ (y/√2 - √2)2 - 4 >= -4

Vậy GTNN là -4 đạt được khi x = y = 2

24 tháng 8 2016

Tìm GTNN chớ bạnbạn

2.

A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)

Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3

24 tháng 3 2016

x=2

y=2

gtln=4

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

25 tháng 8 2018

\(N=x^2+y^2+xy+x+y\)

\(\Rightarrow N=\left(x^2+xy+y^2\right)+\left(x+y\right)\)

\(\Rightarrow N=\left(x+y\right)^2+\left(x+y\right)\)

\(\Rightarrow N=\left(x+y\right)\left(x+y+1\right)\)

29 tháng 8 2018

(a + b)2 = a2 + 2ab + b2