K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

ta có :  (\(\sqrt{x}\)-   2   )\(^2\)\(\ge\)0

\(\Leftrightarrow\)x  -  4\(\sqrt{x}\)+  4  \(\ge\)0

\(\Leftrightarrow\)x  -  4\(\sqrt{x}\)+  4 +   8\(\sqrt{x}\) \(\ge\)8\(\sqrt{x}\)

   \(\Leftrightarrow\)(\(\sqrt{x}\)+    2  )\(^2\)\(\ge\)8\(\sqrt{x}\)

\(\Leftrightarrow\)-(\(\sqrt{x}\)+    2  )\(^2\)\(\le\)-8\(\sqrt{x}\)

\(\Leftrightarrow\)Q  \(\le\)\(\frac{-8\sqrt{x}}{\sqrt{x}}\)=   (   -  8  )

Dấu ''   =   ''   xaye ra tại   x =  4

24 tháng 11 2019

a. A có nghĩa khi \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne\\\frac{x+\sqrt{x}}{\sqrt{x}+1}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

A\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{x+\sqrt{x}}\)\(=\frac{x-1}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}.\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

b. \(x=7+4\sqrt{3}\Rightarrow\)A = \(\frac{\sqrt{7+4\sqrt{3}}+1}{\sqrt{7+4\sqrt{3}}}=\frac{\sqrt{\left(2+\sqrt{3}\right)^2}+1}{\sqrt{\left(2+\sqrt{3}\right)^2}}=\frac{3+\sqrt{3}}{2+\sqrt{3}}\)

24 tháng 11 2019

cam on bn

3 tháng 4 2018

\(ĐKXĐ:0\le x\ne x\)

a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)

\(P=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)

\(P=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}.\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(\Rightarrow MAX_P=\frac{1}{4}\text{ khi }x=\frac{1}{4}\)

8 tháng 3 2018

Hình như đề sai rùi bạn ơi !

Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác

Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu

Mk nói có gì sai thì thông cảm nha !

8 tháng 3 2018

đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà

\(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)

 

b: \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)