K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2023

P=(-x^2+8x-7)/(2x+2)

P-1=-(x^2-8x+7+x^2+1)/2(x+1)

P-1=-(2x^2-8x+8)/2(x+1)

P-1=-2(x^2-4x+4)/2(x+1)

P-1=-2(x-2)^2/2(x+1)

Vì -2(x-2)^2/2(x+1) ≥0

=> P-1≥0

=>P≥1

Dấu = xảy ra khi x-2=0 =>x=2

Vậy Pmin = 3 khi x = 2

13 tháng 1 2023

cảm ơn nha :)

1:

a: A=x^2+4x+4+13

=(x+2)^2+13>=13

Dấu = xảy ra khi x=-2

b; =x^2-8x+16+84

=(x-4)^2+84>=84

Dấu = xảy ra khi x=4

c: =x^2+x+1/4+19/4

=(x+1/2)^2+19/4>=19/4

Dấu = xảy ra khi x=-1/2

 

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

19 tháng 7 2018

Max A = -7

sory lộn 

TT

19 tháng 7 2018

\(A=-2x^2+8x-15\)

\(-A=2x^2-8x+15\)

\(-A=2\left(x^2-4x+4\right)+7\)

\(-A=2\left(x-2\right)^2+7\)

Mà  \(\left(x-2\right)^2\ge0\forall x\Rightarrow2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge7\)

\(\Leftrightarrow A\le-7\)

Dấu "=" xảy ra khi : 

\(x-2=0\Leftrightarrow x=2\)

Vậy  \(A_{Max}=7\Leftrightarrow x=2\)

4 tháng 10 2015

a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11

Vì (2x-2)2luôn lớn hơn hoặc bằng 0

=>A>hoặc =0+11 hay a>hoặc =11

vậy GTNN của A là 11 khi x=1

7 tháng 7 2016

đề sai ko thể nào là GTNN

7 tháng 7 2016

Lớn nhất

21 tháng 9 2017

\(A=\left(-x^2-8x-16\right)+21\)

\(=-\left(x^2+8x+16\right)+21\)

\(=-\left(x+4\right)^2+21\)

Mà \(-\left(x+4\right)^2\le0\)\(\forall x\)

\(\Rightarrow A\le21\)\(\forall x\)

Dấu = xảy ra khi\(x=-4\)

Vậy MAX \(A=21\Leftrightarrow x=-4\)

31 tháng 10 2019

a)\(A=5-8x-2x^2\)

\(=-2\left(x^2+4x-\frac{5}{2}\right)\)

\(=-2\left(x^2+4x+4-\frac{13}{2}\right)\)

\(=-2\left[\left(x+2\right)^2-\frac{13}{2}\right]\)

\(=-2\left[\left(x+2\right)^2\right]+13\le13\)

Vậy \(A_{max}=13\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)