Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để \(1+\frac{12}{x^2+3}\) đạt gtln <=> \(\frac{12}{x^2+3}\) đạt gtln
<=> \(x^2+3\) đạt gtnn
\(x^2\ge0\Rightarrow x^2+3\ge3\)
Dấu "=" xảy ra <=> x2 = 0 => x = 0
Vậy gtln của B là \(1+\frac{12}{3}=1+4=5\) tại x = 0
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
+) \(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\)≥0 ∀x
⇒\(A\)≥2 ∀x
Min A=2⇔\(x=3\)
+) \(B=11-x^2\)
Câu này chỉ tìm được max thôi nha
Để X^2+15/ X^2 + 3 đạt GTLN
Biểu thức đạt GTLN khi X^2 + 3 đạt giá trị dương nhỏ nhất
x^2≥0⇔x^2+3≥0+3=3
=>GTNN của mẫu là 3 khi đó x^2=0 <=>x=0
=>Giá trị của tử khi x=0 là 0^2+15=15
=>GTLN của biểu thức là:15/3=5⇔x=0
Bạn gì kia rắc rối thế?
\(A=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=\frac{15}{3}=5\) (do \(x^2\ge0\))
Dấu "=" xảy ra khi x = 0
VẬy giá trị lớn nhất của A là 5 khi x = 0