\(A=-2x+\sqrt{x}\)

b) \(B...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

\(a.A=-2x+\sqrt{x}=-2\left(x-2.\dfrac{1}{4}\sqrt{x}+\dfrac{1}{16}\right)+\dfrac{1}{8}=-2\left(\sqrt{x}-\dfrac{1}{4}\right)^2+\dfrac{1}{8}\le\dfrac{1}{8}\left(x\ge0\right)\)

\(\Rightarrow A_{Max}=\dfrac{1}{8}."="\Leftrightarrow x=\dfrac{1}{16}\left(TM\right)\)

\(b.B=-x+5\sqrt{x}=-\left(x-2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}\right)+\dfrac{25}{4}=-\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\left(x\ge0\right)\)

\(\Rightarrow B_{Max}=\dfrac{25}{4}."="\Leftrightarrow x=\dfrac{25}{4}\left(TM\right)\)

\(c.C=-x+1+2\sqrt{x-1}=-\left(x-1-2\sqrt{x-1}+1\right)+1=-\left(\sqrt{x-1}-1\right)^2+1\le1\left(x\ge1\right)\)

\(\Rightarrow C_{Max}=1."="\Leftrightarrow x=2\left(TM\right)\)

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

22 tháng 2 2017

\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)

\(A\le2\sqrt{5}..\)

22 tháng 2 2017

Bài a, c tìm GTLN thì làm được rồi, chỉ không biết tìm GTNN bằng BĐT như thế nào?
 

24 tháng 7 2018

BT1.

a,Ta có :\(A^2=-5x^2+10x+11\)

\(=-5\left(x^2-2x+1\right)+16\)

\(=-5\left(x-1\right)^2+16\)

Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Dấu ''='' xảy ra \(\Leftrightarrow x=1\)

Vậy Max A = 4 \(\Leftrightarrow x=1\)

Câu b,c tương tự nhé.

Bài 2: 

a: \(\sqrt{4-x^2}>=0\)

Dấu '=' xảy ra khi x=2 hoặc x=-2

b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)

\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)

Dấu '=' xảy ra khi x=1/2

c: \(x+\sqrt{x}+1>=1\)

=>1/(x+căn x+1)<=1

Dấu '=' xảy ra khi x=0

13 tháng 9 2016

a/ Ta có

P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)

\(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)

14 tháng 9 2016

mình muốn hỏi câu b cơ bạn ơi

18 tháng 11 2019

a) \(x\ge0\)đặt \(\sqrt{x}=a\ge0\)

\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)

\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)

\(\Rightarrow A_{max}=2\) khi  \(x=1\)

b) 

\(x\ge0\)

\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x-\frac{1}{2}}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)

\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x=}\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

c) \(x\ge0\)

\(C=-2+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)

\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2\frac{7}{8}\le\frac{-7}{8}\)

\(C_{max}=\frac{-7}{8}\)khi đó \(x=\frac{1}{16}\)