K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(6-2\left|1+3x\right|\le6\)'

Max \(A=6\Leftrightarrow1+3x=0\)

\(\Rightarrow3x=-1\)

\(\Rightarrow x=\frac{-1}{3}\)

\(\left|x-2\right|+\left|x-5\right|\ge0\)

Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

15 tháng 8 2016

A= 6-2|1+3x|

Amax khi và chỉ khi 2-/1+3x/min.Vì /1+3x/luôn lớn hơn hoạc bằng 0 mà 2/1-3x/min khi /1-3x/min.

=>để 2/1-3x/min thì /1-3x/=0 khi đó thì 2/1-3x/=0.A= 6-2|1+3x|=6-0=6

Vậy Amax= 6

\(A=2\left|x-5\right|-2015\ge-2015\)

\(Min_A=-2015\Leftrightarrow x=5\)

\(B=205-\left|3x-5\right|\le205\)

\(Max_B=205\Leftrightarrow x=\frac{5}{3}\)

30 tháng 7 2017

có cách làm củ thể hơn k bạn

4 tháng 4 2017

a) A+B=x2+1+3-4x=0 

<=> x2-4x+4=0 <=> (x-2)2=0

=> x=2

b) \(\frac{1}{A+B}=\frac{1}{\left(x-2\right)^2}\)

Để Biểu thức có giá trị nguyên => 1 phải chia hết cho (x-2)2 => (x-2)2=1 => x-2=-1 và x-2=1

=> x=1 và x=3

c) \(\frac{B}{A}=\frac{3-4x}{x^2+1}\)

5 tháng 4 2017

cảm ơn bạn nhiều

10 tháng 10 2020

Bài 1:

Ta có: \(2x+\left|x-3\right|=4\)

\(\Leftrightarrow\left|x-3\right|=4-2x\)

Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

10 tháng 10 2020

Bài 2:

a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)

Vậy Min(A) = 4 khi x = -5/3

b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)

Vậy Max(B) = 10 khi x = -1/2