K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2020

\(A=-3\left(x+1\right)^2+7\le7\)

\(A_{max}=7\) khi \(x=-1\)

\(B=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

\(B_{max}=\frac{5}{4}\) khi \(x=\frac{3}{2}\)

\(C=-x^2-2x+2=-\left(x+1\right)^2+3\le3\)

\(C_{max}=3\) khi \(x=-1\)

\(D=-\left[\left(x+2y\right)^2+\left(x-1\right)^2-4\right]=-\left(x+2y\right)^2-\left(x-1\right)^2+4\le4\)

\(D_{max}=4\) khi \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)

19 tháng 7 2017

Như thế này bn thấy rõ k

Những hằng đẳng thức đáng nhớ

20 tháng 7 2017

Trai Vô Đối cái phần 2 dòng 2 đoạn cuối là j vậy

25 tháng 8 2020

a) ( x - 5 )( 2x + 3 ) + 2x( 1 - x )

= 2x2 - 7x - 15 + 2x - 2x2

= -5x - 15

= -5( x + 3 )

b) ( 3x - 5 )2 - ( x + 5 )( 5 - x ) - 5/2( -2x )2

= 9x2 - 30x + 25 + ( x + 5 )( x - 5 ) - 5/2.4x2

= 9x2 - 30x + 25 + x2 - 25 - 10x2

= -30x

c) ( 3x + 2 )( 4 - 6x + 9x2 ) - 3x( 3x - 2 )2 + 12( -2/3 - 3x2 )

= ( 3x )3 + 23 - 3x( 9x2 - 12x + 4 ) - 8 - 36x2

= 27x3 + 8 - 27x3 + 36x2 - 12x - 8 - 36x2

= -12x

25 tháng 8 2020

a, \(\left(x-5\right)\left(2x+3\right)+2x\left(1-x\right)=2x^2+3x-10x-15+2x-2x^2=-5x-15\)

b, \(\left(3x-5\right)^2-\left(x+5\right)\left(5-x\right)-\frac{5}{2}\left(-2x\right)^2\)

\(=9x^2-30x+25-\left(5x-x^2+25-5x\right)-\frac{5}{2}\left(4x^2\right)\)

\(=-30x\)

15 tháng 9 2021

\(A=4x^2+6x=2x\left(2x+3\right)\)

\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)

\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)

\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)

\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)

15 tháng 9 2021

\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

24 tháng 7 2017

câu d

\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)

28 tháng 10 2019

1 M=\(x^2-4xy+4y^2-2x+4y+10\)

=\(\left(x^2-4xy+4y^2\right)+\left(-2x+4y\right)+10\)

\(=\left(x-2y\right)^2-2\left(x-2y\right)+10\)

\(=\left(x-2y\right)\left(x-2y-2\right)+10\)

\(\left(x-2y\right)\left(x-2y-2\right)\ge0\)

nên \(\left(x-2y\right)\left(x-2y-2\right)+10\ge10\)

\(\Rightarrow\)A\(\ge13\)

dấu "=" xảy ra khi (x-2y)(x-2y-2)=0

\(\left[{}\begin{matrix}x-2y=0\\x-2y-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}2y=x\\x-2y=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0;y=0\\x=2;y=1\end{matrix}\right.\)

vậy GTNN của M=10 khi x=0; y=0

x=2;y=1