Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5-\sqrt{x^2-6x+14}\)
\(=5-\sqrt{\left(x^2-6x+9\right)+5}\)
\(=5-\sqrt{\left(x-3\right)^2+5}\le5-\sqrt{5}\)
Dấu "=" <=> x-3=0
<=> x=3
Vậy ....
Không chắc lắm nha! Phần BĐT phụ mình có đc là nhờ sách nâng cao nên ms làm đc thôi!
Ta c/m BĐT phụ: \(\left|\sqrt{f^2+g^2}-\sqrt{h^2+k^2}\right|\le\sqrt{\left(f-h\right)^2+\left(g-k\right)^2}\) với f - h;g-k là hằng số. (1)
Bình phương hai vế,ta có: \(BĐT\Leftrightarrow f^2+g^2+h^2+k^2-2\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\le f^2+h^2-2fh+g^2+k^2-2gk\)
\(\Leftrightarrow fh+gh\le\sqrt{\left(f^2+g^2\right)\left(h^2+k^2\right)}\) (2)
Nếu fh + gh < 0 thì (2) đúng
Nếu fh + gh >= 0 thì \(\left(2\right)\Leftrightarrow f^2h^2+g^2k^2+2fhgi\le f^2h^2+f^2k^2+g^2h^2+g^2k^2\)
\(\Leftrightarrow\left(fk-gh\right)^2\ge0\)(đúng)
Dấu "=" xảy ra fk = gh và fh + gk >= 0 (trích chứng minh BĐT ở sách 9 chuyên đề đại số THCS_ Vũ Hữu Bình)
Quay lại bài toán,ta có: \(P=\left|\sqrt{\left(x-2\right)^2+1^2}-\sqrt{\left(x+3\right)^2+2^2}\right|\)
\(\le\sqrt{\left(-5\right)^2+\left(1-2\right)^2}=\sqrt{25+1}=\sqrt{26}\)
Dấu "=" xảy ra khi 2(x-2) = 1(x+3) và (x-2)(x+3) + 1(x+3) >=0
Tức là x = 7 (t/m)
BT1.
a,Ta có :\(A^2=-5x^2+10x+11\)
\(=-5\left(x^2-2x+1\right)+16\)
\(=-5\left(x-1\right)^2+16\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=1\)
Vậy Max A = 4 \(\Leftrightarrow x=1\)
Câu b,c tương tự nhé.
\(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}\)
\(\sqrt{\left(x-2\right)^2}\ge0\Leftrightarrow-\sqrt{\left(x-2\right)^2}\le0\Leftrightarrow4-\sqrt{\left(x-2\right)^2}\le4\)
\(\Leftrightarrow A\le4\)
Vậy giá trị lớn nhất của A là 4 tại x = 2
\(5-\sqrt{x^2-6x+14}=5-\sqrt{x^2-6x+9+5}\)
\(=5-\sqrt{\left(x-3\right)^2+5}\le5-\sqrt{5}\)
\(Max=5-\sqrt{5}\Leftrightarrow x=3\)
ta có : \(\sqrt{x^2-6x+14}=\sqrt{\left(x-3\right)^2+5}\) ≥ \(\sqrt{5}\) ( vì \(\left(x-3\right)^2\) ≥ 0 với mọi x )
=> \(-\sqrt{x^2-6x+14}\) ≤ \(-\sqrt{5}\)
=> \(5-\sqrt{x^2-6x+14}\) ≤ \(5-\sqrt{5}\)
vậy GTLN = \(5-\sqrt{5}\) ; đạt được khi \(x-3\) = 0
<=> x = 3
*mik hongg bt đúng hongg nx :>*
ĐKXĐ:
\(\sqrt{x-5}\ge0\Rightarrow x\ge5\)
\(\sqrt{7-x}\ge0\Rightarrow x\le7\)
=> Pmax =2 tại x=7
DKXD:\(5\le x\le7\)
GTLN: \(P=\sqrt{x-5}+\sqrt{7-x}=1.\sqrt{x-5}+1.\sqrt{7-x}\)
\(\le\frac{1^2+\left(\sqrt{x-5}\right)^2}{2}+\frac{1^2+\left(\sqrt{7-x}\right)^2}{2}\left(bdtCOSI\right)\)
\(=\frac{2+x-5+7-x}{2}=2\)
"="\(\Leftrightarrow\hept{\begin{cases}1=\sqrt{x-5}\\1=\sqrt{7-x}\\7\ge x\ge5\end{cases}}\Leftrightarrow x=6\)
Vậy..............................................................
GTNN: ta sẽ chứng minh: \(P\ge\sqrt{2}\)
bđt có thể viết lại thành:\(\sqrt{x-5}+\sqrt{7-x}\ge\sqrt{2}\Leftrightarrow\left(\sqrt{x-5}+\sqrt{7-x}\right)^2\ge\left(\sqrt{2}\right)^2\)
\(\Leftrightarrow x-5+7-x+2\sqrt{\left(x-5\right)\left(7-x\right)}\ge2\Leftrightarrow2+2\sqrt{\left(x-5\right)\left(7-x\right)}\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}\ge0\)(đúng với mọi x thỏa mãn \(7\ge x\ge5\))
"="\(\Leftrightarrow\hept{\begin{cases}2\sqrt{\left(x-5\right)\left(7-x\right)}\\7\ge x\ge5\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=7\end{cases}}}\)
Vậy..........
Ta có :
\(\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}\)
Đến đây bạn làm như thường là đưcọ rồi
Chúc bạn học tốt
\(=7-\sqrt{\left(x-3\right)^2}\le7\)
GTLN là 7