Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, B=\(\frac{3}{4x^2-4x+5}\)
=\(\frac{3}{\left(4x^2-2.2x+4\right)+5-4}\)
=\(\frac{3}{\left(2x-2\right)^2+1}\le\frac{3}{1}=3\)
Để B=3 thì : (2x-2)2=0
\(\Leftrightarrow2x-2=0\)
\(\Leftrightarrow x=1\)
Vậy Max B =3 \(\Leftrightarrow x=1\)
\(A=-2x^2+5x-8\)
\(A=-2\left(x^2-\frac{5}{2}\cdot x+4\right)\)
\(A=-2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}+\frac{39}{16}\right)\)
\(A=-2\left[\left(x-\frac{5}{4}\right)^2+\frac{39}{16}\right]\)
\(A=-2\left(x-\frac{5}{4}\right)^2-\frac{39}{6}\le\frac{-39}{6}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{4}\)
\(B=-x^2-y^2+xy+2x+2y\)
\(2B=-2x^2-2y^2+2xy-4x-4y\)
\(2B=-\left(2x^2+2y^2-2xy+4x+4y\right)\)
\(2B=-\left(x^2-2xy+y^2+x^2+4x+4+y^2+4y+4-8\right)\)
\(2B=-\left[\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2-8\right]\)
\(B=-\frac{\left(x-y\right)^2+\left(x+2\right)^2+\left(y+2\right)^2}{2}+4\le4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=-2\)
\(C=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
\(D=\frac{x^2-6x+14}{x^2-6x+12}=\frac{x^2-6x+12+2}{x^2-6x+12}\)
\(=1+\frac{2}{\left(x-3\right)^2+3}\le1+\frac{2}{3}=\frac{5}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
a.\(\frac{3x-1}{3x+1}+\frac{x-3}{x+3}=2\)
\(\frac{\left(3x-1\right)\left(x+3\right)+\left(3x+1\right)\left(x-3\right)}{\left(3x+1\right)\left(x+3\right)}=\frac{3x^2+8x-3+3x^2-8x-3}{\left(3x+1\right)\left(x+3\right)}=\frac{6x^2-6}{\left(3x+1\right)\left(x+3\right)}=2\)
\(6x^2-6=2\left(3x^2+10x+3\right)\)
\(6x^2-6=6x^2+20x+6\)
-20x-12=0
x=\(\frac{-3}{5}\)
\(a.=\frac{4x\left(x^2-2x+1\right)}{x^2-1x-5x+5}\)
\(=\frac{4x\left(x-1\right)^2}{x\left(x-1\right)-5\left(x-1\right)}\)
\(=\frac{4x\left(x-1\right)^2}{\left(x-5\right)\left(x-1\right)}\)
\(=\frac{4x\left(x-1\right)}{x-5}\)
b) \(\frac{4x^3-64x}{x^2-7x+12}\)
\(=\frac{4x\left(x^2-16\right)}{x^2-3x-4x+12}\)
\(=\frac{4x\left(x+4\right)\left(x-4\right)}{x\left(x-3\right)-4\left(x-3\right)}\)
\(=\frac{4x\left(x+4\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}\)
\(=\frac{4x\left(x+4\right)}{x-3}=\frac{4x^2+16x}{x-3}\)
c) \(\frac{x^2-6x+8}{x^3-8}\)
\(=\frac{x^2-2x-4x+8}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\frac{x\left(x-2\right)-4\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\frac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\frac{x-4}{x^2+2x+4}\)
a) \(x^2+6x-3\)
\(=x^2+6x+9-12\)
\(=\left(x+3\right)^2-12\ge-12\)
Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
a) A=\(\frac{x+1}{6x^3-6x^2}-\frac{x-2}{8x^3-8x}=\frac{x+1}{6x^2\left(x-1\right)}-\frac{x-2}{8x\left(x-1\right)\left(x+1\right)}=\frac{4\left(x+1\right)^2-3x\left(x-2\right)}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{4x^2+8x+4-3x^2+6x}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{x^2+14x+10}{24x^2\left(x-1\right)\left(x+1\right)}\)
a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)
Quy đồng :
\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)
\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
c ) MTC : \(\left(x+2\right)^3\)
\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)
\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)
\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)
\(B=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\Rightarrow B_{max}=\frac{3}{4}\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
2/ Xem lại đề bài, đề bài này thì ko có max, 12 ở mẫu là dấu + thì may ra làm được
ở 12 là dấu cộng bạn ạ