Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{x}\)
b) \(P>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)
\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)
\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)
\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)
Vậy P > 1/2 với mọi x> 0 ; x khác 1
Bài 2 :
a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)
\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)
\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)
b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )
Thay a vào biểu thức K , ta có :
\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)
bài trên là rút gọn nha mấy bạn
giải giùm mik vs mik cảm ơn nhìu
\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
ĐK : \(\hept{\begin{cases}x,y>0\\x\ne y\end{cases}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{x+2\sqrt{xy}+y}{x-y}-\frac{x-2\sqrt{xy}+y}{x-y}\)
\(=\frac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}=\frac{4\sqrt{xy}}{x-y}\)
Với \(\hept{\begin{cases}x=7+2\sqrt{3}\\y=7-2\sqrt{3}\end{cases}}\)( tmđk )
=> \(A=\frac{4\sqrt{\left(7+2\sqrt{3}\right)\left(7-2\sqrt{3}\right)}}{7+2\sqrt{3}-\left(7-2\sqrt{3}\right)}\)
\(=\frac{4\sqrt{7^2-\left(2\sqrt{3}\right)^2}}{7+2\sqrt{3}-7+2\sqrt{3}}\)
\(=\frac{4\sqrt{49-12}}{4\sqrt{3}}\)
\(=\frac{4\sqrt{37}}{4\sqrt{3}}=\frac{\sqrt{37}}{\sqrt{3}}=\frac{\sqrt{37}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{\sqrt{111}}{3}\)
2 )\(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
CMTT \(\frac{1}{1+y}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân vế với vế 3 bđt được
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow P=xyz\le\frac{1}{8}\)
Dấu "=" xảy ra khi z=y=z = 1/2
1)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{8b}>\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\Leftrightarrow\frac{a-b}{2\sqrt{b}}>\sqrt{a}-\sqrt{b}\)
\(\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2>0\) (có a>b>0 theo gt) (đpcm)
\(\frac{16}{2x+y+z}=\frac{16}{x+x+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\)
Tương tự:
\(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z};\frac{16}{x+y+2z}\le\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\)
Cộng lại:
\(16P\le4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\Rightarrow P\le1\)
dấu "=" xảy ra tại \(x=y=z=\frac{3}{4}\)
\(\sqrt{1\left(x-1\right)}\le\frac{1+x-1}{2}=\frac{x}{2}\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{\frac{x}{2}}{x}=\frac{1}{2}\)
\(\sqrt{2\left(y-2\right)}\le\frac{y-2+2}{2}=\frac{y}{2}\Rightarrow\sqrt{y-2}\le\frac{y}{2\sqrt{2}}\Rightarrow\frac{\sqrt{y-2}}{y}\le\frac{1}{2\sqrt{2}}\)
Vậy GTLN của B là \(\frac{1}{2}+\frac{1}{2\sqrt{2}}\)
tại x = 2 và y = 4