Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
a: -4|x-2|<=0
=>-4|x-2|+10<=10
Dấu = xảy ra khi x=2
b: |x+2|>=0
=>-|x+2|<=0
=>E<=0
Dấu = xảy ra khi x=-2
a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)
b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)
A=7+|x+2015|
Ta có: |x+2015|>=0(với mọi x)
=>7+|x+2015|>=7 hay A>=7
Do đó, GTNN của A là 7 khi:
x+2015=0
x=0-2015
x=-2015
Vậy GTNN của A là 7 khi x=-2015
B=15-(4+x)2
Ta có: (4+x)2>=0(với moi x)
=>15-(4+x)2<=15 hay A<=15
Do đó, GTLN của A là 15 khi:
4+x=0
x=0-4
x=-4
Vậy GTLN của A là 15 khi x=-4
C=\(\sqrt{x-10}-2016\)
Ta có: \(\sqrt{x-10}\)>=0(với mọi x khác âm)
=>\(\sqrt{x-10}\)-2016>=-2016 hay C>=-2016
Do đó, GTNN của C là -2016 khi:
x-10=0
x=0+10
x=10
Vậy GTNN của C là -2016 khi x=10
câu C mk chưa học nhưng mk nghĩ thế nào làm thế nấy, ko chắc ăn
a ) C = 12 - | x + 4 |
Vì | x + 4 | >= 0
=> C = 12 - | x + 4 | <=12
Dấu ( = ) xảy ra : x + 4 = 0
x = -4
Vậy C lớn nhất bằng 12 khi x = -4
b ) D = 9 - | x - 1 /10 |
Vì | x - 1 /10 | > = 0
=> D = 9 - | x - 1 /10 | < = 9
Dấu ( = ) xảy ra : x - 1 /10 = 0
x = 1 / 10
Vậy D lớn nhất bằng 9 khi x = 1 / 10
Bài 1:
Ta có: \(2x+\left|x-3\right|=4\)
\(\Leftrightarrow\left|x-3\right|=4-2x\)
Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
Bài 2:
a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)
Vậy Min(A) = 4 khi x = -5/3
b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)
Vậy Max(B) = 10 khi x = -1/2
10 nhé bạn
Ta có: để B có GTLN thì 4lx-2l bé nhất => lx-2l=0
Vậy GTLN=10