\(\frac{x}{\left(x+4\right)^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

ĐK: \(x\ne-4\)

\(A=\frac{x}{\left(x+4\right)^2}=\frac{16x}{16\left(x^2+8x+16\right)}=\frac{x^2+8x+16-x^2+8x-16}{16\left(x^2+8x+16\right)}=\frac{1}{16}-\frac{\left(x-4\right)^2}{16\left(x+4\right)^2}\le\frac{1}{16}\forall x\)

Dấu "=" xảy ra khi: \(x-4=0\Rightarrow x=4\) (thỏa mãn ĐKXĐ)

Vậy \(A_{max}=\frac{1}{16}\Leftrightarrow x=4\)

19 tháng 2 2019

a) \(-ĐKXĐ:x\ne\pm2;1\)

Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)

b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)

\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)

Vậy với mọi x thỏa mãn x>1 thì A > 0

c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy x = -1;-2

24 tháng 6 2019

Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)

<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)

<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\frac{x+4}{x-4}\)

b) Thay x=\(\frac{-3}{8}\) vào M:

M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)

c)Hình như sai!

d)

3 tháng 10 2020

\(ĐK:x\ne-4\)

Xét biểu thức

\(A=\frac{x}{\left(x+4\right)^2}-\frac{1}{16}+\frac{1}{16}=\frac{x}{x^2+8x+16}-\frac{1}{16}+\frac{1}{16}=\frac{16x-x^2-8x-16}{16\left(x^2+8x+16\right)}+\frac{1}{16}=\frac{-x^2+8x-16}{16\left(x+4\right)^2}+\frac{1}{16}=\frac{-\left(x-4\right)^2}{16\left(x+4\right)^2}+\frac{1}{16}\)Vì \(x\ne-4\)nên \(16\left(x+4\right)^2>0\forall x\Rightarrow\frac{-\left(x-4\right)^2}{16\left(x+4\right)^2}\le0\forall x\)

\(\Rightarrow\frac{-\left(x-4\right)^2}{16\left(x+4\right)^2}+\frac{1}{16}\le\frac{1}{16}\forall x\)

Vậy \(MaxA=\frac{1}{16}\) khi và chỉ khi x = 4

3 tháng 10 2020

Hôm qua không biết làm, giờ biết làm rồi '-'

Nhờ Idol check lại hộ mình nha.

                                                                                                      Giải: 

Đặt\(\frac{1}{x+4}=t\)

\(\Rightarrow x+4=\frac{1}{t}\Rightarrow x=\frac{1}{t}-4\)

Khi đó \(A=\frac{\frac{1}{t}-4}{\left(\frac{1}{t}\right)^2}=\left(\frac{1}{t}-4\right).t^2\)

\(\Leftrightarrow A=t=4t^2\Leftrightarrow A=-4\left(t^2-\frac{1}{4}t\right)\)

\(\Leftrightarrow A=-4\left(t^2-2.\frac{1}{8}t+\frac{1}{64}-\frac{1}{64}\right)\Leftrightarrow A=-4\left(t-\frac{1}{8}\right)^2+\frac{1}{16}\)

Ta có : \(-4\left(t-\frac{1}{8}\right)^2+\frac{1}{16}\le\frac{1}{16}\forall t\)

=> MinA=\(\frac{1}{16}\Leftrightarrow t-\frac{1}{8}=0\Leftrightarrow t=\frac{1}{8}\Leftrightarrow\frac{1}{x+4}=\frac{1}{8}\Leftrightarrow x+4=\frac{1}{\frac{1}{8}}=8\Leftrightarrow x=4\)

Vậy MinA=\(\frac{1}{16}\)<=> x=4