\(A=\frac{\sqrt{x}-2}{x\sqrt{x}-8}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

Ri à~

Hãy tha thứ cho ng pác bj trúng lời nguyền học ngu nài;)

4 tháng 10 2021

\(A=\frac{\sqrt{x}-2}{x\sqrt{x}-8}\) \(\left(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\sqrt{x}-8\ne0\end{cases}}\right)\)

\(\Rightarrow\hept{\begin{cases}x\ge0\\x\sqrt{x}\ne8\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x^3\ne64\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\frac{\sqrt{x}-2}{x\sqrt{x}-8}=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}=\frac{1}{x+2\sqrt{x}+4}=\frac{1}{x+2\sqrt{x}+1+3}=\frac{1}{\left(\sqrt{x}+1\right)^2+3}\)

Ta có: \(\left(\sqrt{x}+1\right)^2\ge1\forall x\ge0;x\ne4\)

\(\Rightarrow\left(\sqrt{x}+1\right)^2+3\ge4\forall x\ge0;x\ne4\)

\(\Rightarrow\frac{1}{\left(\sqrt{x}+1\right)^2+3}\ge\frac{1}{4}\forall x\ge0;x\ne4\)

Dấu '' = '' xảy ra khi: \(\sqrt{x}=0\Rightarrow x=1\)

Vậy \(MaxA=\frac{1}{4}\) khi \(x=0\)

1 tháng 3 2018

b, Gọi biểu thức đề ra là B

=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)

=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\) 

( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )

=> Min B=6

1 tháng 3 2018

Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)

\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)

\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)

=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1

=> \(x=y=z=\frac{1}{3}\)

Vậy ...

18 tháng 6 2018

Toán lớp 9 nha

18 tháng 6 2018

Bạn ghi rõ GTLN là gì đi

1 tháng 5 2019

Quẩy lên các em êii

1 tháng 5 2019

\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)

\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)

\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)

\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

...

12 tháng 11 2016

xin lỗi mk chịu

mk mới học lớp 6

nhaE@@

oOo ko biết làm oOo

huhuavt836275_60by60.jpgnguyen thi thuy trang 

 

12 tháng 11 2016

Đặt \(\sqrt{x^2-2}=a\left(a\ge0\right)\)

\(\Rightarrow x^2=a^2+2\)

Thế vào ta được

\(A=-\frac{a^2+100}{a}=-\left(a+\frac{100}{a}\right)\le-2\sqrt{100}=20\)

Đạt được khi \(\orbr{\begin{cases}x=\sqrt{102}\\x=-\sqrt{102}\end{cases}}\)

19 tháng 7 2021

Theo đề bài, ta có:

\(x^3+y^3=x^2-xy+y^2\)

hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)

+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)

+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)

Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

5 tháng 8 2016

1) Ta có : \(A=2x+\frac{1}{x^2}+\sqrt{2}=x+x+\frac{1}{x^2}+\sqrt{2}\)

Áp dụng bất đẳng thức Cauchy : \(x+x+\frac{1}{x^2}\ge3.\sqrt[3]{x.x.\frac{1}{x^2}}=3\)

\(\Rightarrow A\ge3+\sqrt{2}\). Dấu đẳng thức xảy ra \(\Leftrightarrow x=\frac{1}{x^2}\Leftrightarrow x=1\)

Vậy A đạt giá trị nhỏ nhất bằng \(3+\sqrt{2}\) tại x = 1

2) Đặt \(y=x+2016\) \(\Rightarrow x=y-2016\)thay vào B :

\(B=\frac{x}{\left(x+2016\right)^2}=\frac{y-2016}{y^2}=-\frac{2016}{y^2}-\frac{1}{y}\)

Lại đặt \(t=\frac{1}{y}\) , \(B=-2016t^2+t=-2016\left(t-\frac{1}{4032}\right)^2+\frac{1}{8064}\le\frac{1}{8064}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow t=\frac{1}{4032}\Leftrightarrow y=4032\Leftrightarrow x=2016\)

Vậy B đạt gá trị lớn nhất bằng \(\frac{1}{8064}\)tại x = 2016

7 tháng 10 2016

x=2016

nhé bn

đúng ko vậy

bn mình

ko biết