\(\dfrac{2009}{2009+\left(x+1\right)^2}\)

B= 1-(2x-1)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

a)Ta thấy: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow2009+\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\dfrac{1}{2009+\left(x+1\right)^2}\le\dfrac{1}{2009}\forall x\)

\(\Rightarrow\dfrac{2009}{2009+\left(x+1\right)^2}\le\dfrac{2009}{2009}=1\forall x\)

\(\Rightarrow A\le1\)

Đẳng thức xảy ra khi \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\) thì \(A_{Max}=1\)

b)Ta thấy: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow1-\left(2x-1\right)^2\le1\forall x\)

\(\Rightarrow B\le1\)

Đẳng thức xảy ra khi \(-\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy với \(x=\dfrac{1}{2}\) thì \(B_{Max}=1\)

12 tháng 3 2017

thiếu đề

28 tháng 7 2017

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

=> \(7-3x=0\) hoặc \(2x+1=0\)

\(3x=7-0\) hoặc \(2x=0-1\)

\(3x=7\) hoặc \(2x=-1\)

\(x=7:3\) hoặc \(x=-1:2\)

\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)

Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)

24 tháng 2 2017

Ta có:A=\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)

\(\frac{1}{2}A\)=\(\frac{1}{2}\)\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{4}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)

\(\frac{1}{2}A\)=\(\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^5+...+\left(\frac{1}{2}\right)^{100}\right]\)

\(\frac{1}{2}A-A\)=\(\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^5+...+\left(\frac{1}{2}\right)^{100}\right]\)-\(\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....+\left(\frac{1}{2}\right)^{99}\right]\)

\(-\frac{1}{2}A\)=\(\left(\frac{1}{2}^{100}\right)-\frac{1}{2}\)

\(-\frac{1}{2}A\)=\(-\frac{1}{2}\)

A=\(-\frac{1}{2}:\left(-\frac{1}{2}\right)\)

A=1

Chúc bạn học tốt!

24 tháng 2 2017

Cảm ơn bạn nhiều!!!

12 tháng 3 2017

Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?

Bạn kiểm tra lại nha

12 tháng 3 2017

xin lỗi z chứ ko phải là 2

29 tháng 10 2017

a)hình như đề sai thì phải

sửa lại

\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)

=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)

=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)

2 tháng 6 2017

a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)

Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

hay a/b=5/6

7 tháng 9 2017

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{81}\)

<=> \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{9}\\x+\dfrac{1}{2}=-\dfrac{1}{9}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-\dfrac{7}{18}\\x=-\dfrac{11}{18}\end{matrix}\right.\)

7 tháng 9 2017

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{81}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{9}\\x+\dfrac{1}{2}=-\dfrac{1}{9}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{18}\\x=-\dfrac{11}{18}\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{7}{18};x_2=-\dfrac{11}{18}\).

8 tháng 6 2017

b,

\(B=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\left(1-\frac{1}{1999}\right)\)

\(\Rightarrow B=\frac{1}{1999.2000}-\frac{1998}{1999}\)

\(\Rightarrow B=\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)

\(\Rightarrow B=\left(\frac{1}{1999}-\frac{1998}{1999}\right)-\frac{1}{2000}\)

\(\Rightarrow B=\frac{-1997}{1999}-\frac{1}{2000}\)

8 tháng 6 2017

Cảm ơn bn!Mặc dù mik chư hiểu z hết!haha