\(4x-x^2\)

b,\(-5x^2-4x+1\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Hàn Dĩnh \(-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}\)Đặt -5 ta ngoài ở trong còn x^2 ; 4/5x rồi cộng 4/25 để thành hằng đẳng thức .NHưng đề bài là +1 , bây giờ mình phải + 9/5 để = 1 , đúng với đề bài

23 tháng 6 2017

\(a,4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^24\le\)Vậy GTLN của biểu thức là \(4\) khi \(2-x=0\Rightarrow x=2\)

\(b,-5x^2-4x+1=-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}=-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\le\dfrac{9}{5}\)Vậy GTLN của biểu thức là \(\dfrac{9}{5}\) khi \(x+\dfrac{2}{5}=0\Rightarrow x=\dfrac{-2}{5}\)

8 tháng 8 2017

1.

A =\(2x^2-8x+10=\left(x^2-2x+1\right)+\left(x^2-6x+9\right)\)

\(=\left(x-1\right)^2+\left(x-3\right)^2=\left(x-1\right)^2+\left(3-x\right)^2\)

Có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(3-x\right)^2\ge0\end{matrix}\right.\forall x\)

<=> \(\left|x-1\right|+\left|x-3\right|\)

Áp dụng bđt |a| + |b| \(\ge\) |a + b| có:

\(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)

đẳng thức xảy ra khi \(1\le x\le3\)

Vậy ................

8 tháng 8 2017

1.

a)

\(A=2x^2-8x+10=2\left(x^2-4x+4\right)+2\ge=2\left(x-2\right)^2+2\ge2\)

Đẳng thức xảy ra \(\Leftrightarrow x=2\)

b)

\(B=3x^2-x+20=3\left(x^2-\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{239}{12}=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{12}\ge\dfrac{239}{12}\)

Đẳng thức xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)

c) ĐK: \(x\ne-1\)

\(C=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4x^2+8x+4}\)

\(=\dfrac{3x^2+6x+3}{4x^2+8x+4}+\dfrac{x^2-2x+1}{4x^2+8x+4}\)

\(=\dfrac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4x^2+8x+4}\ge\dfrac{3}{4}\)

Đẳng thức xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

6 tháng 10 2018

a) \(A=25x^2-10x+9\)

\(A=\left(5x\right)^2-2\cdot5x\cdot1+1^2+9\)

\(A=\left(5x-1\right)^2+9\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)

18 tháng 10 2018

\(A=\frac{2}{-5x^2+3x+2}=\frac{2}{\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}}\)

\(A=\frac{2}{-5\left(x^2-\frac{3}{5}+\frac{9}{100}\right)+\frac{49}{20}}=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\ge\frac{2}{\frac{49}{20}}=\frac{40}{49}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-5\left(x-\frac{3}{10}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{3}{10}\)

Vậy GTNN của \(A\) là \(\frac{40}{49}\) khi \(x=\frac{3}{10}\)

\(B=\frac{5}{5x^2+4x+1}=\frac{5}{\left(5x^2+4x+\frac{4}{5}\right)+\frac{1}{5}}\)

\(B=\frac{5}{5\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{1}{5}}=\frac{5}{5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}}\le\frac{5}{\frac{1}{5}}=25\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(5\left(x+\frac{2}{5}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-2}{5}\)

Vậy GTLN của \(B\) là \(25\) khi \(x=\frac{-2}{5}\)

Chúc bạn học tốt ~ 

18 tháng 10 2018

a) Ta có: A bé nhất khi \(-5x^2+3x+2\) lớn nhất

Ta có: \(-5x^2+3x+2=\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}\)

\(=-5\left(x^2-2.\frac{3}{10}+\frac{9}{100}\right)=-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}\le\frac{49}{20}\)

Do đó \(A=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\le\frac{40}{49}\)

Dấu "=" xảy ra \(\Leftrightarrow-5\left(x-\frac{3}{10}\right)^2=0\Leftrightarrow x=\frac{3}{10}\)

Vậy \(A_{max}=\frac{40}{49}\Leftrightarrow x=\frac{3}{10}\)

b) Để B lớn nhất thì \(5x^2+4x+1\) bé nhất.Ta có:

\(5x^2+4x+1=\left(5x^2+4x\right)+1\)

\(=5\left(x^2+\frac{4}{5}x\right)+1=5\left(x^2+2.\frac{4}{10}+\frac{4}{25}\right)+\frac{1}{5}\)

\(=5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

Do đó \(B=\frac{5}{5\left(x+\frac{2}{5}\right)^2}\le\frac{5}{\frac{1}{5}}=25\)

Dấu "=" xảy ra \(\Leftrightarrow5\left(x+\frac{2}{5}\right)^2=0\Leftrightarrow x=-\frac{2}{5}\)

Vậy \(B_{max}=25\Leftrightarrow x=-\frac{2}{5}\)

23 tháng 6 2017

a) Để x-x^2 bé nhất thì x^2 bé nhất => x^2 = 0 => x= 0

thay x =0 vào x-x^2 , có 0 - 0^2 = 0

Vậy giá trị bé nhất của x-x^2 =0 tại x= 0

b) 4x-x^2 ( làm như trên )

8 tháng 6 2019

\(Đặt:A=x-x^2\)

\(\Rightarrow-A=x^2-x\Rightarrow-A+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-A\ge-\frac{1}{4}\Rightarrow A\le\frac{1}{4}\)

đó là max à nha

1 tháng 11 2017

a) \( A=5x-x^2\)

\(\Leftrightarrow A=-x^2+2.x\dfrac{5}{2}-\left(\dfrac{5}{2}\right)^2+\left(\dfrac{5}{2}\right)^2\)

\(\Leftrightarrow A=-\left[x^2-2.x\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\left(\dfrac{5}{2}\right)^2\)

\(\Leftrightarrow A=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Vậy GTLN của \(A=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)

b) \(B=x-x^2\)

\(\Leftrightarrow B=-x^2+2.x\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow B=-\left[x^2-2.x\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\left(\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

Vậy GTLN của \(B=\dfrac{1}{4}\) khi \(x=\dfrac{1}{2}\)

c) \(C=4x-x^2+3\)

\(\Leftrightarrow C=-x^2+4x-4+7\)

\(\Leftrightarrow C=-\left(x^2-2.x.2+2^2\right)+7\)

\(\Leftrightarrow C=-\left(x-2\right)^2+7\)

Vậy GTLN của \(C=7\) khi \(x=2\)

4 tháng 7 2017

a, \(A=4x^2-4x+2017\)

\(=4x^2-4x+1+2016\)

\(=\left(2x-1\right)^2+2016\ge2016\)

Dấu " = " khi \(\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MIN_A=2016\) khi \(x=\dfrac{1}{2}\)

b, \(B=-x^2+5x-2018\)

\(=-\left(x^2-5x+2018\right)\)

\(=-\left(x^2-\dfrac{5}{2}x2+\dfrac{25}{4}+\dfrac{8047}{4}\right)\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2+\dfrac{8047}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2-\dfrac{8047}{4}\le\dfrac{-8047}{4}\)

Dấu " = " khi \(\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(MAX_B=\dfrac{-8047}{4}\) khi \(x=\dfrac{5}{2}\)

4 tháng 7 2017

a, \(4x^2-4x+2017=4x^2-2x-2x+1+2016\)

\(=\left(2x-1\right)^2+2016\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(2x-1\right)^2+2016\ge2016\) với mọi giá trị của \(x\in R\)

Để \(\left(2x-1\right)^2+2016=2016\) thì \(2x-1=0\)

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy......................

b, \(-x^2+5x-2018=-\left(x^2-2,5x-2,5x+6,25+2011,75\right)\)

\(=-\left[\left(x-2,5\right)^2+2011,75\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2,5\right)^2+2011,75\ge2011,75\)

\(\Rightarrow-\left[\left(x-2,5\right)^2+2011,75\right]\le-2011,75\)với mọi giá trị của \(x\in R\)

Để \(-\left[\left(x-2,5\right)^2+2011,75\right]=-2011,75\) thì \(\left(x-2,5\right)^2=0\)

\(\Rightarrow x=2,5\)

Vậy...............

Chúc bạn học tốt!!!

9 tháng 7 2016

a) \(-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)

Vậy Max = 10 <=> x = 3

b) \(-5x^2-4x+1=-5\left(x^2+2.x.\frac{2}{5}+\frac{4}{25}\right)+\frac{4}{5}+1=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\)

Vậy Max = \(\frac{9}{5}\Leftrightarrow x=-\frac{2}{5}\)