Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)
- Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)
\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)
Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...
C4 : Bạn cần thêm điều kiện x là số dương nhé : )
Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy :
\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)
Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)
Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)
Vậy .......
\(y-3=\left(15-x\right)-3=12-x\)
\(B=\sqrt{x-4}+\sqrt{12-x}\)
\(B^2=x-4+12-x+2\sqrt{x-4}\sqrt{12-x}\)
\(=8+2\sqrt{\left(x-4\right)\left(12-x\right)}\ge8\)
\(\Rightarrow B\ge\sqrt{8}\)
Dấu bằng xảy ra khi \(\sqrt{\left(x-4\right)\left(12-x\right)}=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=12\end{cases}}\)
a/
\(A=\sqrt{x+2}.\sqrt{x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow}x\ge3}\)
\(B=\sqrt{\left(x+2\right)\left(x-3\right)}\)
ĐKXĐ: \(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow}x\ge3}\)
b/ A = B \(\Leftrightarrow\sqrt{x+2}.\sqrt{x-3}=\sqrt{\left(x+2\right)\left(x-3\right)}\)
\(\Rightarrow\sqrt{\left(x+2\right)\left(x-3\right)}=\sqrt{\left(x+2\right)\left(x-3\right)}\) (đúng)
Vậy với mọi giá trị của \(x\in R\) thì A = B
Ta có : \(A=\sqrt{x-5}+\sqrt{23-x}\)
\(\Rightarrow A^2=18+2\sqrt{\left(x-5\right)\left(23-x\right)}\)
Áp dụng bđt Cauchy : \(2\sqrt{\left(x-5\right)\left(23-x\right)}\le x-5+23-x=18\)
Suy ra : \(A^2\le36\Rightarrow A\le6\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}5\le x\le23\\x-5=23-x\end{cases}}\)\(\Leftrightarrow x=9\)
Vậy A đạt giá trị lớn nhất bằng 6 tại x = 14