\(a^2+b^2+c^2+ab+bc+ac\)với a+b+c=6 và \(0\le a,b,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

we had abc+(4-a)(4-b)(4-c)\(\ge0\). khai triển ta có \(ab+bc+ca\ge8\)( maybe)

\(P=\left(a+b+c\right)^2-\left(ab+bc+ca\right)\le6^2-8=28\)

Dấu = xảy ra (a,b,c)~(0;2;4) và các hoán vị

20 tháng 6 2016

Bài như thiếu gì đó

20 tháng 6 2016

k thiếu rì đâu !!! mk xem kĩ đề rồi

28 tháng 7 2017

b)Từ \(a+b+c=6\Rightarrow\left(a+b+c\right)^2=36\)

\(\Rightarrow36=a^2+b^2+c^2+2\left(ab+bc+ca\right)=P+ab+bc+ca\)

\(\Rightarrow P=36-ab-bc-ca\). Cần tìm \(GTNN\) của \(ab+bc+ca\)

Không mất tính tổng quát giả sử \(a=max\left\{a,b,c\right\}\)

\(\Rightarrow a+b+c=6\le3a\Rightarrow2\le a\le4\). Lại có:

\(ab+bc+ca\ge ab+ac=a\left(b+c\right)=a\left(6-a\right)\ge8\)

Suy ra GTNN của \(ab+bc+ca=8\Leftrightarrow\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)

Vậy GTLNP là \(36-8=28\) khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)

28 tháng 9 2019

Áp dụng BĐT Cô - Si cho 3 số dương \(\frac{a}{b};\frac{b}{c};\frac{c}{a}\)ta có :

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

\(\Rightarrow P\ge3\)

dấu bằng sảy ra \(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

\(\Rightarrow a=b=c\)và \(2\le a,b,c\le4\)

28 tháng 9 2019

GTLN là \(P\le\)

27 tháng 7 2020

hiển nhiên \(a,b\ge c\) nên không mất tính tổng quát, ta giả sử \(a\ge b\ge c\)

Ta co: 

\(\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow\)\(ab\ge a+b-1\)

\(bc\ge0\)

\(c\left(a-b\right)\ge0\)\(\Leftrightarrow\)\(ca\ge bc\ge c\)

\(\frac{9}{ab+bc+ca}-2\le\frac{9}{a+b-1+c}-2=\frac{5}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}\left(a;b;c\right)=\left(2;1;0\right)\\\left(a;b;c\right)=\left(1;2;0\right)\end{cases}}\)

1 tháng 4 2020

đặt \(t=ab+bc+ca\)

\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)

mặt khác 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)

khi đó 

\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)

xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)

\(f'\left(t\right)=-\frac{9}{t^2}< 0\)

=> f(t) N Biến \(\left(-\infty,3\right)\)

min f(t)=f(3)=1

koo tồn tại max\(f\left(t\right)\)

zậy minP=1 khi a=b=c=1

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)