K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

\(A=12xy+6x-13x^2-9y^2+5\)

\(\Leftrightarrow A=-4x^2+12xy-9y^2-9x^2+6x-1+6\)

\(\Leftrightarrow A=-\left(4x^2-12xy+9y^2\right)-\left(9x^2-6x+1\right)+6\)

\(\Leftrightarrow A=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\right]-\left[\left(3x\right)^2-2.3x.1+1^2\right]+6\)

\(\Leftrightarrow A=-\left(2x-3y\right)^2-\left(3x-1\right)^2+6\)

Vậy GTLN của \(A=6\) khi \(\left\{{}\begin{matrix}2x-3y=0\\3x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2.\dfrac{1}{3}-3y=0\\x=\dfrac{1}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{9}\\x=\dfrac{1}{3}\end{matrix}\right.\)

6 tháng 12 2017

\(A=12xy+6x-13x^2-9y^2+5\)

\(\Leftrightarrow A=-4x^2+12xy-9y^2-9x^2+6x-1+6\)

\(\Leftrightarrow A=-\left(4x^2-12xy+9y^2\right)-\left(9x^2-6x+1\right)+6\)

\(\Leftrightarrow A=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2\right]- \left[\left(3x\right)^2-2.3x.1+1^2\right]+6\)

\(\Leftrightarrow A=-\left(2x-3y\right)^2-\left(3x-1\right)^2+6\)

Vậy GTLN của \(A=6\) khi \(\left\{{}\begin{matrix}2x-3y=0\\3x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2.\dfrac{1}{3}-3y=0\\x=\dfrac{1} {3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{9}\\x=\dfrac{1} {3}\end{matrix}\right.\)

a)x2-6x+9

=x2-2.x.3+32

=(x-3)2

b)4x2+4x+1

=(2x)2+2.2x.1+12

=(2x+1)2

c)4x2+12xy+9y2

=(2x)2+2.2x.3y+(3y)2

=(2x+3y)2

d)4x4-4x2+4

=(2x2)2-2.2x2.2+22

=(2x2-2)2

a: \(\left(3x-1\right)\left(9x^2+3x+1\right)=27x^3-1\)

b: \(\left(1-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{5}+1\right)=1-\dfrac{x^3}{125}\)

c: \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)

d: \(\left(4x+3y\right)\left(16x^2-12xy+9y^2\right)=64x^3+27y^3\)

26 tháng 7 2018

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

19 tháng 9 2021

\(a,=\left(x+\dfrac{5}{2}\right)^2\\ b,=\left(2x+3y\right)^2\\ c,=a^2+b^2+c^2+2ab-2bc-2ac\\ d,=\left(4x-1\right)^2\\ e,=a^2+b^2+c^2+2ab+2bc+2ac\\ f,=a^2+b^2+c^2-2ab+2bc-2ac\)

\(A=x^3+15x^2+75x+125=\left(x+5\right)^3=-125\)

\(B=4x^2+12xy+9y^2=\left(2x+3y\right)^2=\left(3+6\right)^2=81\)

NV
22 tháng 4 2021

\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)

\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)

\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)

\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)

\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)

\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)