K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

1)Ta có:

\(A=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{x^2\left(x+1\right)+x+1}=\dfrac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{3}{x^2+1}\)

Mà: \(x^2\ge0\Rightarrow x^2+1\ge1\)

\(\Rightarrow A=\dfrac{3}{x^2+1}\le\dfrac{3}{1}=3\)

\(\Rightarrow MaxA=1\) khi \(x=0\)

Câu 2: 

a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)

\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)

Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)

hay \(a\in\left\{0;4;-4\right\}\)

Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)

hay \(a\notin\left\{0;4;-4\right\}\)

b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)

\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình vô nghiệm thì m+4=0

hay m=-4

Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0

hay \(m\in R\backslash\left\{1;-4\right\}\)

a: =>x(a^2+b^2+2ab)=a+6

=>x(a+b)^2=a+6

TH1: a=-b và a=-6

=>PT có vô số nghiệm

TH2: a=-b và a<>-6

=>PTVN

TH3: a<>-b

=>PT có nghiệm duy nhất là x=(a+6)/(a+b)^2

b: TH1: a=1

=>PT có vô số nghiệm

TH2: a<>1

=>PT có nghiệm duy nhất là \(x=\dfrac{-3\left(a-1\right)}{a-1}=-3\)

d: =>x(m^2-1)=2m-2

=>x(m-1)(m+1)=2(m-1)

TH1: m=1

=>PT có vô số nghiệm

TH2: m=-1

=>PTVN

TH3: m<>1; m<>-1

=>PT có nghiệm duy nhất là x=2/(m+1)

31 tháng 3 2018

a)

\(m^2x=m\left(x+2\right)-2\)

\(\Leftrightarrow m^2x=mx+2m-2\)

\(\Leftrightarrow m^2x-mx=2m-2\)

\(\Leftrightarrow x\left(m^2-m\right)=2\left(m-1\right)\)      (1)

+) Nếu \(m^2-m\ne0\Leftrightarrow m\ne0;1\)

Phương trình có 1 nghiệm duy nhất   \(x=\frac{2\left(m-1\right)}{m^2-m}=\frac{2\left(m-1\right)}{m\left(m-1\right)}=\frac{2}{m}\)

+) Nếu \(m=0\)

Phương trình (1) \(\Leftrightarrow0x=-2\) ( vô lí )

\(\Rightarrow\) phương trình vô nghiệm

+) Nếu \(m=1\)

Phương trình (1) \(\Leftrightarrow0x=0\)

\(\Rightarrow\) phương trình có vô số nghiệm

Vậy khi m khác 0 ; 1 thì phương trình có 1 nghiệm duy nhất   \(x=\frac{2}{m}\)

       khi m = 0 thì phương trình vô nghiệm

      khi m = 1 thì phương trình có nghiệm đúng với mọi x

31 tháng 3 2018

b)

\(m^2x+2=4x+m\)

\(\Leftrightarrow m^2x-4x=m-2\)

\(\Leftrightarrow x\left(m^2-4\right)=m-2\)(2)

+) Nếu \(m^2-4\ne0\Leftrightarrow m\ne\pm2\)

Phương trình có 1 nghiệm duy nhất   \(x=\frac{m-2}{m^2-4}=\frac{m-2}{\left(m-2\right)\left(m+2\right)}=\frac{1}{m+2}\)

+) Nếu \(m=2\)

Phương trình (2) \(\Leftrightarrow0x=0\)

\(\Rightarrow\) phương trình có nghiệm đúng với mọi x

+) Nếu \(m=-2\)

Phương trình (2) \(\Leftrightarrow0x=-4\) ( vô lí )

\(\Rightarrow\) phương trình vô nghiệm

Vậy .....

8 tháng 8 2021

nhờ các bạn giải giúp mk câu d là được

17 tháng 2 2017

chúng ta xét 2 trường hợp:

trường hợp 1:với m =-1, phương trình có dạng :

x3-3x2=0\(\Leftrightarrow x^2\left(x-3\right)=0\Leftrightarrow\begin{matrix}x=0\\x=3\end{matrix}\)

vậy, với phương trình có 2 nghiệm x=0 và x=3

trường hợp 2 : với m \(\ne-1\), nhân 2vế của phương trình với m+1, ta được:

(m+1)x3-3(m+1)x2+3(m+1)2x-(m+1)3=0

\(\Leftrightarrow x^3-3\left(m+1\right)x^2+3\left(m+1\right)^2x-\left(m+1\right)^3=-mx^3\)

\(\Leftrightarrow\left(x-m-1\right)^3=-mx^3\Leftrightarrow x-m-1=-x\sqrt[3]{m}\)

\(\Leftrightarrow x=\frac{m+1}{\sqrt[3]{m+1}}=\sqrt[3]{m^2}-\sqrt[3]{m}+1\)

vậy, với m \(\ne-1\) phương trình có nghiệm x = \(\sqrt[3]{m^2}-\sqrt[3]{m}+1\)

17 tháng 2 2017

sao bạn đăng câu hỏi rồi bạn tự trả lời luôn vậy

20 tháng 1 2016

1/

-x^3 -5x^2 + 4x +4

=> x1 =-5.5877............

    x2=1.1895.............

    x3=-0.6018............