Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)
\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)
Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)
hay \(a\in\left\{0;4;-4\right\}\)
Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)
hay \(a\notin\left\{0;4;-4\right\}\)
b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)
\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)
Để phương trình có vô số nghiệm thì m-1=0
hay m=1
Để phương trình vô nghiệm thì m+4=0
hay m=-4
Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0
hay \(m\in R\backslash\left\{1;-4\right\}\)
a: =>x(a^2+b^2+2ab)=a+6
=>x(a+b)^2=a+6
TH1: a=-b và a=-6
=>PT có vô số nghiệm
TH2: a=-b và a<>-6
=>PTVN
TH3: a<>-b
=>PT có nghiệm duy nhất là x=(a+6)/(a+b)^2
b: TH1: a=1
=>PT có vô số nghiệm
TH2: a<>1
=>PT có nghiệm duy nhất là \(x=\dfrac{-3\left(a-1\right)}{a-1}=-3\)
d: =>x(m^2-1)=2m-2
=>x(m-1)(m+1)=2(m-1)
TH1: m=1
=>PT có vô số nghiệm
TH2: m=-1
=>PTVN
TH3: m<>1; m<>-1
=>PT có nghiệm duy nhất là x=2/(m+1)
a)
\(m^2x=m\left(x+2\right)-2\)
\(\Leftrightarrow m^2x=mx+2m-2\)
\(\Leftrightarrow m^2x-mx=2m-2\)
\(\Leftrightarrow x\left(m^2-m\right)=2\left(m-1\right)\) (1)
+) Nếu \(m^2-m\ne0\Leftrightarrow m\ne0;1\)
Phương trình có 1 nghiệm duy nhất \(x=\frac{2\left(m-1\right)}{m^2-m}=\frac{2\left(m-1\right)}{m\left(m-1\right)}=\frac{2}{m}\)
+) Nếu \(m=0\)
Phương trình (1) \(\Leftrightarrow0x=-2\) ( vô lí )
\(\Rightarrow\) phương trình vô nghiệm
+) Nếu \(m=1\)
Phương trình (1) \(\Leftrightarrow0x=0\)
\(\Rightarrow\) phương trình có vô số nghiệm
Vậy khi m khác 0 ; 1 thì phương trình có 1 nghiệm duy nhất \(x=\frac{2}{m}\)
khi m = 0 thì phương trình vô nghiệm
khi m = 1 thì phương trình có nghiệm đúng với mọi x
b)
\(m^2x+2=4x+m\)
\(\Leftrightarrow m^2x-4x=m-2\)
\(\Leftrightarrow x\left(m^2-4\right)=m-2\)(2)
+) Nếu \(m^2-4\ne0\Leftrightarrow m\ne\pm2\)
Phương trình có 1 nghiệm duy nhất \(x=\frac{m-2}{m^2-4}=\frac{m-2}{\left(m-2\right)\left(m+2\right)}=\frac{1}{m+2}\)
+) Nếu \(m=2\)
Phương trình (2) \(\Leftrightarrow0x=0\)
\(\Rightarrow\) phương trình có nghiệm đúng với mọi x
+) Nếu \(m=-2\)
Phương trình (2) \(\Leftrightarrow0x=-4\) ( vô lí )
\(\Rightarrow\) phương trình vô nghiệm
Vậy .....
chúng ta xét 2 trường hợp:
trường hợp 1:với m =-1, phương trình có dạng :
x3-3x2=0\(\Leftrightarrow x^2\left(x-3\right)=0\Leftrightarrow\begin{matrix}x=0\\x=3\end{matrix}\)
vậy, với phương trình có 2 nghiệm x=0 và x=3
trường hợp 2 : với m \(\ne-1\), nhân 2vế của phương trình với m+1, ta được:
(m+1)x3-3(m+1)x2+3(m+1)2x-(m+1)3=0
\(\Leftrightarrow x^3-3\left(m+1\right)x^2+3\left(m+1\right)^2x-\left(m+1\right)^3=-mx^3\)
\(\Leftrightarrow\left(x-m-1\right)^3=-mx^3\Leftrightarrow x-m-1=-x\sqrt[3]{m}\)
\(\Leftrightarrow x=\frac{m+1}{\sqrt[3]{m+1}}=\sqrt[3]{m^2}-\sqrt[3]{m}+1\)
vậy, với m \(\ne-1\) phương trình có nghiệm x = \(\sqrt[3]{m^2}-\sqrt[3]{m}+1\)
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
1)Ta có:
\(A=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{x^2\left(x+1\right)+x+1}=\dfrac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{3}{x^2+1}\)
Mà: \(x^2\ge0\Rightarrow x^2+1\ge1\)
\(\Rightarrow A=\dfrac{3}{x^2+1}\le\dfrac{3}{1}=3\)
\(\Rightarrow MaxA=1\) khi \(x=0\)