\(2x-2x^2-5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

Ta có:\(2x-2x^2-5=-\left(2x^2-2x+5\right)\)

\(=-\left[2\left(x^2-x+\dfrac{5}{2}\right)\right]\)

\(=-\left\{2\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+\dfrac{5}{2}\right]\right\}\)

\(=-\left\{2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\right\}\)

\(=-\left[2\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{2}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)

Do \(-2\left(x-\dfrac{1}{2}\right)^2\le0\) với \(\forall x\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\) )

\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\) hay \(2x-2x^2-5\le-\dfrac{9}{2}\) (dấu ''='' xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy giá trị lớn nhất của biểu thức \(2x-2x^2-5\)\(-\dfrac{9}{2}\) tại \(x=\dfrac{1}{2}\)

21 tháng 8 2018

A = 2x - 2x2 - 5

=> 2A = -4x2 + 4x - 10

=> 2A = -(4x2 - 4x + 10)

=> 2A = - [(2x)2 - 2.2x + 1] - 9

=> 2A = -(2x - 1)2 -9

Mà: -(2x - 1)2 \(\le\) 0 => -(2x - 1)2 - 9 \(\le\) -9

=> 2A \(\le\) -9

=> A \(\le\) -4,5

Đẳng thức xảy ra khi: -(2x - 1)2 = 0 <=> x = \(\dfrac{1}{2}\)

10 tháng 6 2019

a. \(x^2+2x+1=\left(x+1\right)^2\ge0\)

b. \(x^2-2x+1=\left(x-1\right)^2\ge0\)

a. x2+2x+1=(x+1)2\(\ge\)0

Dấu"=" xảy ra khi x=-1

b. x2−2x+1 =(x-1)2\(\ge\)0

Dấu"=" xảy ra khi x=1

20 tháng 9 2018

a) \(2x^2+2x+5=2\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)+5-\frac{2}{4}\)

   \(=2\left[\left(x+\frac{1}{2}\right)^2\right]+\frac{9}{2}\)

=> Giá trị nhỏ nhất của biểu thức bằng \(\frac{9}{2}\) khi \(x=-\frac{1}{2}\)

b) Biểu thức câu b trái dấu với biểu thức câu a nên ta suy ra giá trị lớn nhất của biểu thức câu b là \(-\frac{9}{2}\)

11 tháng 2 2017

\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)

\(=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(x^4-1\right)\left(2x-1\right)\left(4x^2-2x+1\right)+2\left(2x-1\right)\left(4x^2+2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(2x-1\right)\left(4x^2-2x+1\right)\left(x^4-1+2\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{x^4+1}{2x+1}\)

12 tháng 2 2017

bạn ơi tìm các giá trị của x sau khi bạn đã rút gọn í cái đề mk đăng lên là dậy đó tìm x khi P = 6 đó!

12 tháng 6 2019

Đề phải là tìm GTNN chứ

12 tháng 6 2019

\(2x+x^2-10\)

\(=x^2+2x-10\)

\(=x^2+2\cdot1\cdot x+1-1+10\)

\(=\left(x+1\right)^2-1+10\)

\(=\left(x+1\right)^2+9\)

Có \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+9\ge9\)

\(\Rightarrow GTLN\left(2x+x^2-10\right)=9\)

                        với \(\left(x+1\right)^2=0;x=\left(-1\right)\)

10 tháng 5 2019

Câu c tương tự câu a. Chia ra 2 trường hợp để giải.

Còn một cách giải nhanh hơn dễ hơn đó là lập bảng xét dấu. Nhưng cái này lên lớp 10 sẽ được tìm hiểu rỏ hơn. Chúc bạn may mắn.

10 tháng 5 2019

a) \(\frac{2}{x-1}>1\Leftrightarrow\frac{2}{x-1}-1>0\Leftrightarrow\frac{3-x}{x-1}>0\)

Chia làm 2 trường hợp

TH1: Cả từ và mẩu đều dương.

\(\left\{{}\begin{matrix}3-x>0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>1\end{matrix}\right.\)

Vậy .......

TH2: Cả tử và mẫu đều âm.

\(\left\{{}\begin{matrix}3-x< 0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\x< 1\end{matrix}\right.\)( vô nghiệm.)

10 tháng 1 2020

Phân thức đại số

11 tháng 1 2020

bạn có thể giải mấy câu kia luôn

7 tháng 12 2018

1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như

+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

rồi bạn rút gọn

2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị

3) bạn tự làm đc :))

7 tháng 12 2018

(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)

=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)

Cố gắng lên bạn nhé!