\(2-\sqrt{x-1}-x\)

Tìm a để x4 + 4 chia hết...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Tìm a,b,c biết ax^3 + bx^2 + c chia hết x+2 và chia x^2 - 1 dư x + 5

ax³+bx²+c =ax³+2ax²+(b-2a)x²+2(b-2a)x-2(b-2a)x-4(b...
=ax²(x+2)+(b-2a)x(x+2)-2(b-2a)(x+2)+4(b...
=(x+2)[ax²+(b-2a)x-2(b-2a)]+4b-8a+c
ax³+bx²+c chia hết cho x+2 =>4b-8a+c=0. (1)
ax³+bx²+c =ax³-ax+bx²-b+ax+b+c
=(x²-1)(ax+b)+ax+b+c. chia cho x²-1 dư ax+b+c. đồng nhất hệ số của số dư với x+5 ta có a=1; b+c=5. (2)
Thay a=1 vào (1) => 4b+c=8 (3).
(3)-(2) => 3b=3 =>b=1. thay b=1 vào (2)=>c=4
ĐS: a=1; b=1; c=4.

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

15 tháng 1 2017

p(x)=2x4+ax +bx+c

\(P\left(x\right)⋮\left(x+2\right)\)nên P(-2)=0 hay\(32+4a-2b+c=0\leftrightarrow4a-2b+c=-32\)(1)

P(x) chia (x2-1) dư x =>P(x)-x\(⋮\)(x2-1)

=> 2x4+ax2+(b-1)x+c\(⋮\left(x^2-1\right)\)

gọi thương của phép chia trên là Q:

2x4+ax2+(b-1)x+c=(x-1)(x+1).Q

x=1\(\Rightarrow\)2+a+b-1+c=0 <=> a+b+c=-1(2)

x=-1 =>2+a+1-b+c=0 <=> a-b+c=-3(3)

từ (1),(2)và (3) ta có hệ\(\left\{\begin{matrix}4a-2b+c=-32\\a+b+c=-1\\a-b+c=-3\end{matrix}\right.\)....

giải hệ ta được \(\left\{\begin{matrix}a=-\frac{28}{3}\\b=1\\c=\frac{22}{3}\end{matrix}\right.\)

vậy ..

26 tháng 10 2016

chiu

tk nhe@@@@@@@@@@@@

xin do

byeavt755854_60by60.jpg

26 tháng 10 2016

Ta dùng phương pháp xét giá trị riêng.

  • Đặt \(ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)

Với \(x=-2\Rightarrow-8a+4b+c=\left(-2+2\right)Q\left(x\right)=0\)\(\left(\cdot\right)\)

  • Đặt \(ax^3+bx^2+c=\left(x^2-1\right).Q\left(x\right)+x+5\)
  1. Với \(x=1\Rightarrow a+b+c=\left(1-1\right)Q\left(x\right)+1+5\)


    \(\Rightarrow a+b+c=6\)

  2. Với \(x=-1\Rightarrow-a+b+c=\left(1-1\right)Q\left(x\right)+5-1\)

         \(\Rightarrow-a+b+c=4\)

Cộng cả hai vế vào có : \(2\left(b+c\right)=10\)

\(\Rightarrow b+c=5\)

\(\Rightarrow a=1\)

Thay \(a=1\)vào \(\left(\cdot\right);\)có :

\(-8+4b+c=0\)

\(\Rightarrow4b+c=8\)

Mà \(b+c=5\)

\(\Rightarrow\left(4b+c\right)-\left(b+c\right)=8-5\)

\(\Rightarrow3b=3\)

\(\Rightarrow b=1\)

\(\Rightarrow c=5-b=5-1=4\)

Vậy \(\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}.\)

11 tháng 10 2018

Em tham khảo bài có cách làm tương tự ở link dưới đây:

Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath

3 tháng 11 2019

Đa thức x- 3x + 2 có nghiệm \(\Leftrightarrow\)x- 3x + 2 = 0

\(\Leftrightarrow x^2-2x-x+2=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

1 và 2 là hai nghiệm của đa thức x- 3x + 2

Để f(x) = x+ ax+ bx - 1  chia hết cho x- 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x+ ax+ bx - 1

Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1

Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)

Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)

\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)

Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)