Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)
Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)
"=" Xảy ra khi và chỉ khi:
\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)
\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)
\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)
\(a+b+c=1\)
Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)
Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
Câu 1:
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{\left(x^2+\frac{1}{4}+3x\right)}{x}.\frac{\left(x^2+\frac{1}{4}-x\right)}{x}=12\)
\(\Leftrightarrow\left(x+\frac{1}{4x}+3\right)\left(x+\frac{1}{4x}-1\right)-12=0\)
Đặt \(x+\frac{1}{4x}-1=a\) ta được:
\(\left(a+4\right)a-12=0\Leftrightarrow a^2+4a-12=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{4x}-1=2\\x+\frac{1}{4x}-1=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+\frac{1}{4}=0\\x^2+5x+\frac{1}{4}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}...\\...\end{matrix}\right.\)
Câu 2:
\(x=\sqrt{3+\sqrt{12+2\sqrt{12}+1}}=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)
\(=\sqrt{4+\sqrt{12}}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(y=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{y}=\sqrt{3}-1\)
\(B=\frac{2\left(4+2\sqrt{3}\right)-5\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)+3\left(4-2\sqrt{3}\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)-\left(4-2\sqrt{3}\right)}\)
\(B=\frac{8+4\sqrt{3}-10+12-6\sqrt{3}}{2-4+2\sqrt{3}}=\frac{10-2\sqrt{3}}{-2+2\sqrt{3}}=\frac{5-\sqrt{3}}{\sqrt{3}-1}\)
\(B=\frac{\left(5-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{5\sqrt{3}+5-3-\sqrt{3}}{2}=\frac{2+4\sqrt{3}}{2}=2\sqrt{3}+1\)
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)