Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\dfrac{2010}{x^2-2x+1001}=\dfrac{2010}{x^2-2x+1+1000}=\dfrac{2010}{\left(x-1\right)^2+1000}\le\dfrac{101}{100}\)
\(b=\dfrac{1000}{x^2+y^2-20\left(x+y\right)+2210}=\dfrac{1000}{x^2+y^2-20x-20y+2210}=\dfrac{1000}{x^2+y^2-20x-20y+100+100+2010}=\dfrac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\dfrac{100}{201}\)
\(c=\dfrac{100}{25x^2-20x+14}=\dfrac{100}{25x^2-20x+4+10}=\dfrac{10}{\left(5x-2\right)^2+10}\le1\)
mk ko hiểu cái chỗ a. \(\le\dfrac{101}{100}\)
b.\(\le\dfrac{100}{201}\)
a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2
= 2x^2-4xy+2y^2/x^2-xy+y^2
= 2.(x^2-2xy+y^2)/x^2-xy+y^2
= 2.(x-y)^2/x^2-xy+y^2
>= 0 ( vì x^2-xy+y^2 > 0 )
Dấu "=" xảy ra <=> x-y=0 <=> x=y
Vậy ..........
b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x
= (x-1995)^2 + 7980x >= 7980x
=> M < = x/7980x = 1/7980 ( vì x > 0 )
Dấu "=" xảy ra <=> x-1995=0 <=> x=1995
Vậy ...............
\(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\)
\(\Rightarrow A_{min}=1\Leftrightarrow\left(x-10\right)^2=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
Để \(B\)lớn nhất thì \(\frac{1}{B}\) nhỏ nhất
Ta có: \(\frac{1}{B}=\frac{x^2+20x+100}{x}=x+\frac{100}{x}+20\)
Áp dụng BĐT Cô-si ta có: \(\frac{1}{B}=x+\frac{100}{x}+20\ge2\sqrt{x.\frac{100}{x}}+20=2.\sqrt{100}+20=40\)
Dấu :'=" xảy ra \(\Leftrightarrow\)\(x=\frac{100}{x}\)\(\Leftrightarrow\)\(x=10\)
Min \(\frac{1}{B}=40\) \(\Rightarrow\) Max \(B=\frac{1}{40}\) \(\Leftrightarrow\)\(x=10\)
P/s: tham khảo nhé, nếu có sai đâu m.n chỉ mk nhé (yếu nhất cực trị)