
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A = - x^{2} - 7 y^{2} - 4 x y + 16 y + 2 x - 12\) \(= - \left(\right. x^{2} + 4 x y + 7 y^{2} \left.\right) + 2 x + 16 y - 12\) \(= - \left(\right. \left(\right. x + 2 y \left.\right)^{2} + 3 y^{2} \left.\right) + 2 x + 16 y - 12\)
ta có
\(u = x + 2 y \Rightarrow x = u - 2 y\)
ta thay
\(A = - \left(\right. u - 1 \left.\right)^{2} - 3 \left(\right. y - 2 \left.\right)^{2} + 1\)
Vì \(\left(\right. u - 1 \left.\right)^{2} \geq 0 , \left(\right. y - 2 \left.\right)^{2} \geq 0 \Rightarrow A \leq 1\)
ta có
\(\textrm{ }u=1,\textrm{ }y=2\textrm{ }\Rightarrow x=-3\)
vậy
\(maxA=1\text{t}ạ\text{i}\left(\right.x,y\left.\right)=\left(\right.-3,2\left.\right)\)

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu

\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)
\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)
\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)
\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)
\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)
\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)

\(A=x^2+2x+3=\left(x+1\right)^2+2>=2\)
Dấu '=' xảy ra khi x=-1
\(B=-\left(x^2+4x-1\right)\)
\(=-\left(x^2+4x+4-5\right)\)
\(=-\left(x+2\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-2
\(C=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21< =21\)
Dấu '=' xảy ra khi x=-4
\(D=-\left(x^2+x-1\right)\)
\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}< =\dfrac{5}{4}\)
Dấu '=' xảy ra khi x=-1/2
= 2\(x^{2}\) + 3y\(^{2}\) - 8\(x\) - 6y + 15
A = 2(\(x^{2}\) - 4\(x\) + 4) + 3(y\(^{2} - 2 y + 1\)) + 6
A = 2.(\(x - 2 \left.\right)^{2}\) + 3(y - 1)\(^{2}\) + 4
Vì (\(x - 2 \left.\right)^{2}\) ≥ 0; ∀ \(x\); (y -1)\(^{2}\) ≥ 0 ∀ y
⇒ 2.(\(x - 2 \left.\right)^{2}\) ≥ 0 ∀ \(x\); 3(y - 1)\(^{2}\) + 4 ≥ y ∀ y
2.(\(x - 2 \left.\right)^{2}\) + 3(y - 1)\(^{2}\) + 4 ≥ 4; Dấu bằng xảy ra khi:
\(\left{\right. x - 2 = 0 \\ y - 1 = 0\)
\(\left{\right. x = 2 \\ y = 1\)
Vậy A đạt giá trị nhỏ nhất là 4 khi (\(x ; y\)) = (2; 1)