K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

a) A = 2x - x2 + 2

= -x2 + 2x + 2

= -(x2 - 2x + 1 - 1) + 2

= -(x - 1)2 + 3

Ta có: -(x - 1)2 ≤ 0 với ∀x

Nên: -(x - 1)2 + 3 ≤ 3 với ∀x

Dấu "=" xảy ra ⇔ -(x - 1)2 = 0

x - 1 = 0

x = 1

Vậy GTLN của biểu thức A là 3 khi x = 1

Các câu còn lại bạn làm tương tự nhé !

17 tháng 5 2019

Mấy bài này căng vậy?

a)4(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)

<=>72 - 20x - 36x +84 = 30x - 240 - 6x 84

<=> -80x = -480

<=> x = 6

b) 5(3x+5)-4(2x-3) =5x+3(2x+12)+1

<=> 15x + 25  - 8x + 12 = 5x + 6x + 36 + 1

<=> 15x + 25 - 8x + 12 - 5x - 6x - 36 - 1 = 0

<=> -4x = 0

<=> x = 0

c) 2(5x-8)-3(4x-5)=4(3x-4)+11

= 10x - 16 - 12x + 15 = 12x - 16 + 11

= -14x = -4

= x =\(\frac{2}{7}\)

d) 5x-3{4x-2[4x-3(5x-2)]}=182

= 5x - 3 . [4x - 2(4x - 15x + 6)]

= 5x - 3 . (4x - 8x + 30x - 12)

= 5x - 12x + 24x - 90x + 36

= -73x + 36 = 182

=> -73x = 182 - 36 = 146

=> x = 146 : (-73) = -2

~Hok tốt~

31 tháng 5 2021

\(A=-x^2+3x-5\)\(=-\dfrac{11}{4}-\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)=-\dfrac{11}{4}-\left(x-\dfrac{3}{2}\right)^2\le-\dfrac{11}{4}\) với mọi x

\(\Rightarrow A_{max}=-\dfrac{11}{4}\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

\(B=5x-4x^2-3=-\dfrac{23}{16}-\left(4x^2-2.\dfrac{5}{4}.2x+\dfrac{25}{16}\right)\)\(=-\dfrac{23}{16}-\left(2x-\dfrac{5}{4}\right)^2\)\(\le-\dfrac{23}{16}\forall x\)

\(\Rightarrow B_{max}=-\dfrac{23}{16}\Leftrightarrow2x-\dfrac{5}{4}=0\Leftrightarrow x=\dfrac{5}{8}\)

\(C=5-4x-25x^2=\dfrac{129}{25}-\left(25x^2+2.5x.\dfrac{2}{5}+\dfrac{4}{25}\right)\)\(=\dfrac{129}{25}-\left(5x+\dfrac{2}{5}\right)^2\le\dfrac{129}{25}\forall x\)

\(\Rightarrow C_{max}=\dfrac{129}{25}\Leftrightarrow5x+\dfrac{2}{5}=0\Leftrightarrow x=-\dfrac{2}{25}\)

31 tháng 5 2021

\(D=3x-2x^2=-2\left(x^2-\dfrac{3}{2}x\right)=-2\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{9}{8}\)\(=\dfrac{9}{8}-2\left(x-\dfrac{3}{4}\right)^2\le\dfrac{9}{8}\) với mọi x

\(\Rightarrow D_{max}=\dfrac{9}{8}\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)

\(E=2+6x-\dfrac{1}{4}x^2=-\dfrac{1}{4}\left(x^2-24x\right)+2=-\dfrac{1}{4}\left(x^2-2.12x+144\right)+38\)\(=38-\dfrac{1}{4}\left(x-12\right)^2\le38\forall x\)

\(\Rightarrow E_{max}=38\Leftrightarrow x-12=0\Leftrightarrow x=12\)

\(F=-5x^2+4x=-5\left(x^2-\dfrac{4}{5}x\right)=-5\left(x^2-2.\dfrac{2}{5}x+\dfrac{4}{25}\right)+\dfrac{4}{5}\)\(=\dfrac{4}{5}-5\left(x-\dfrac{2}{5}\right)^2\le\dfrac{4}{5}\forall x\)

\(\Rightarrow F_{max}=\dfrac{4}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Leftrightarrow x=\dfrac{2}{5}\)

a: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)

\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)

c: \(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)

\(=\dfrac{3\left(1+2x\right)}{2\left(x+4\right)}\)

d: \(=\dfrac{12x}{8x^3}\cdot\dfrac{15y^4}{5y^3}=\dfrac{3}{2x^2}\cdot3y=\dfrac{9y}{2x^2}\)

f: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)

 

6 tháng 8 2020

a, ( x2 + x )2 - 14 ( x2 + x ) + 24

= (x2 + x)2 - 2(x2 + x) -12(x2 + x) + 24

= (x2 + x).(x2 + x -2) - 12(x2 + x -2)

= (x2 + x -2).(x2 + x -12)

= (x2 + 2x - x - 2).(x2 + 4x - 3x - 12)

=[x.(x+2)-(x+2)].[x.(x+4)-3(x+4)]

= (x+2).(x-1).(x+4).(x-3)

= x4 + 2x3 - 13x2 - 14x + 24

b, ( x2 + x )2 + 4x2 + 4x - 12

= x4 + 2x3 + x2 + 4x2 + 4x -12

= x4 + 2x3 + 5x2 + 4x -12

c, x4 + 2x3 + 5x2 + 4x - 12

= x4 - x3 + 3x3 - 3x2 + 8x2 - 8x +12x -12

= x3(x-1) + 3x2(x-1) + 8x(x-1) + 12(x-1)

= (x-1) . (x3 + 3x2 + 8x +12)

= (x-1) . ( x3 +2x2 + x2 + 2x + 6x +12)

= (x-1). [x2(x+2) + x(x+2) + 6(x+2)]

= (x-1).(x+2).(x2 + x+ 6)

Bài 4:

a) Ta có: \(a^4+a^2+1\)

\(=a^4+2a^2+1-a^2\)

\(=\left(a^2+1\right)^2-a^2\)

\(=\left(a^2-a+1\right)\left(a^2+a+1\right)\)

b) Ta có: \(a^4+a^2-2\)

\(=a^4+2a^2-a^2-2\)

\(=a^2\left(a^2+2\right)-\left(a^2+2\right)\)

\(=\left(a^2+2\right)\left(a^2-1\right)\)

\(=\left(a^2+2\right)\left(a-1\right)\left(a+1\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+5x^2-x^2-5\)

\(=x^2\left(x^2+5\right)-\left(x^2+5\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)

d) Ta có: \(x^3-19x-30\)

\(=x^3-25x+6x-30\)

\(=x\left(x^2-25\right)+6\left(x-5\right)\)

\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x\right)+6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2+5x+6\right)\)

\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

e) Ta có: \(x^3-7x-6\)

\(=x^3-4x-3x-6\)

\(=x\left(x^2-4\right)-3\left(x+2\right)\)

\(=x\left(x-2\right)\left(x+2\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x\right)-3\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x+2\right)\left(x^2-3x+x-3\right)\)

\(=\left(x+2\right)\left[x\left(x-3\right)+\left(x-3\right)\right]\)

\(=\left(x+2\right)\left(x-3\right)\left(x+1\right)\)

f) Ta có: \(x^3-5x^2-14x\)

\(=x\left(x^2-5x-14\right)\)

\(=x\left(x^2-7x+2x-14\right)\)

\(=x\left[x\left(x-7\right)+2\left(x-7\right)\right]\)

\(=x\left(x-7\right)\left(x+2\right)\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

26 tháng 7 2017

Cậu nên lên học 24h thì hơn vì ở đó giành cho lớp 6 trở lên ! Còn ở đây giành cho lớp 5 trở xuống !

26 tháng 7 2017

thực ra thì web này mới dành cho THCS, học24 dành cho THPT cơ nhé, post bài bên nào cũng như nhau thôi quan trọng là đừng post nhiều quá 1 lúc ko ai làm đâu

25 tháng 9 2018

Bài 1:

a) \(x^2-y^2+10x+25\)

\(=\left(x^2+10x+25\right)-y^2\)

\(=\left(x+5\right)^2-y^2\)

\(=\left(x+y+5\right)\left(x-y+5\right)\)

b) \(x^3-x^2-5x+125\)

\(=x^3+5x^2-6x^2-30x+25x+125\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

c) \(x^4+4y^4\)

\(=\left(x^2\right)^2+2x^22y^2+\left(2y^2\right)^2-2x^22y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

d)Sửa đề \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)-b\left[\left(b^2-c^2\right)+\left(a^2-b^2\right)\right]+c\left(a^2-b^2\right)\)

\(=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)-b\left(a^2-b^2\right)+c\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b^2-c^2\right)-\left(b-c\right)\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c\right)-\left(b-c\right)\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b+c-a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

e) \(7x^2-10xy+3y^2\)

\(=\left(\sqrt{7}x\right)^2-2.\sqrt{7}x.\sqrt{3}y+\left(\sqrt{3}y\right)^2\)

\(=\left(\sqrt{7}x-\sqrt{3}y\right)^2\)

f) Sửa đề \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

h) \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

\(=x^2y+xy^2-y^2z-yz^2+x^2z-xz^2\)

\(=\left(x^2y+x^2z\right)+\left(xy^2-xz^2\right)-yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y^2-z^2\right)-yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)\left(y-z\right)-yz\left(y+z\right)\)

\(=\left(y+z\right)\left[x^2+x\left(y-z\right)-yz\right]\)

\(=\left(y+z\right)\left(x^2+xy-xz-yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)-z\left(x+y\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x-z\right)\)

27 tháng 9 2018

ài 2 đâu bạn