Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=(1/(x-sqrtx)+1/(sqrtx-1)):(sqrtx+1)/(sqrtx-1)^2`
`=((sqrtx+1)/(x-sqrtx)).(sqrtx-1)^2/(sqrtx+1)`
`=(sqrtx-1)^2/(x-sqrtx)`
`=(sqrtx-1)/sqrtx`
\(Q=\sqrt{x+3}+\sqrt{10-x}\)
\(\Leftrightarrow Q^2=\left(\sqrt{x+3}+\sqrt{10-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x+3}\right)^2+\left(\sqrt{10-x}\right)^2\right]\)
\(\Leftrightarrow Q^2\le2\left(x+3+10-x\right)=2.13=26\)
\(\Leftrightarrow Q\le\sqrt{26}\)
\(maxQ=\sqrt{26}\Leftrightarrow x+3=10-x\Leftrightarrow x=\dfrac{7}{2}\)
Áp dụng BĐT Bunhiacopski:
\(Q=\sqrt{x+3}+\sqrt{10-x}\\ \Leftrightarrow Q^2=\left(\sqrt{x+3}+\sqrt{10-x}\right)^2\le\left(1^2+1^2\right)\left(x+3+10-x\right)=2\cdot13=26\\ \Leftrightarrow Q\le\sqrt{26}\\ Q_{max}=\sqrt{26}\Leftrightarrow x+3=10-x\Leftrightarrow x=\dfrac{7}{2}\)
Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
khi đó:
\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy max P = 3 tại a = b = c =1.
Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-
Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra
\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:
\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Đây là bất đẳng thức Schur bậc 3, ta có đpcm.
*bài này tìm Min thôi :v x càng lớn thì A càng lớn nên khó tìm Max lắm*
ĐK : x ≥ 0
Ta có : \(A=\frac{3\sqrt{x}}{\sqrt{x}+1}=\frac{3\sqrt{x}+3-3}{\sqrt{x}+1}=3-\frac{3}{\sqrt{x}+1}\)
Ta có : \(\sqrt{x}+1\ge1\left(\forall xtmdk\right)\Rightarrow\frac{3}{\sqrt{x}+1}\le3\Leftrightarrow3-\frac{3}{\sqrt{x}+1}\ge0\)
Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MinA = 0
nhân thêm cả tử và mẫu với căn x rồi xài miền giá trị , chắc là ra cả min lẫn max