Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2002\right|+\left|x-2003\right|=\left|x-2002\right|+\left|2003-x\right|\ge\left|-2002+2003\right|=1\)
Dấu ''='' xảy ra khi \(\left(x-2002\right)\left(2003-x\right)\ge0\Leftrightarrow2002\le x\le2003\)
Vậy GTNN của A bằng 1 tại 2002 =< x =< 2003
\(B=5,5-\left|2x-5\right|\le5,5\)
Dấu ''='' xảy ra khi x = 5/2
Vậy GTLN của B bằng 5,5 tại x = 5/2
a, Với mọi x ta có :
\(\left|4,3-x\right|\ge0\)
\(\Leftrightarrow3,7+\left|4,3-x\right|\ge3,7\)
\(\Leftrightarrow P\ge3,7\)
Dấu "=" xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\)
\(\Leftrightarrow x=4,3\)
Vậy \(P_{Min}=3,7\Leftrightarrow x=4,3\)
b, Với mọi x ta có :
\(\left|2x-1,5\right|\ge0\)
\(\Leftrightarrow-\left|2x-1,5\right|\le0\)
\(\Leftrightarrow5,5-\left|2x-1,5\right|\le5,5\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-1,5\right|=0\)
\(\Leftrightarrow2x-1,5=0\)
\(\Leftrightarrow x=0,75\)
Vậy \(Q_{Max}=5,5\Leftrightarrow x=0,75\)
Tim GTNN : D = | x - 2002 | + | x + 2001 |
Áp dụng tính chất I A I + I B I \(\ge\)I A + B I ta được:
D = | x - 2002 | + | x + 2001 |= I 2002-x I + I x+2001 I\(\ge\)I 2002-x+x+2001 I = 2003
Vậy GTNN của D là 2003 tại 2002 - x=0 hoặc x+2001 =0
x=2002 hoặc x=-2001
Tim GTLN : M = 5,5 - | 2x - 1,5 |
ta có | 2x - 1,5 |\(\ge\)0
=>- | 2x - 1,5 |\(\le\)0
=> M = 5,5 - | 2x - 1,5 |\(\le\)5,5
Vậy GTLN của M là 5,5 tại 2x-1,5=0
2x =1,5
x=\(\frac{3}{4}\)
N = | 10m2 - 3x | -14 câu này ko rõ
\(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow x^2+2x+3\ge2\)
Dấu = khi x=-1
\(B=\left|2x+3\right|-\left|2x-4\right|\le\left|2x+3-2x+4\right|=\left|7\right|=7\)
Dấu "=" xảy ra khi \(\left(2x+3\right)\left(2x-4\right)\ge0\)
TH1: \(\hept{\begin{cases}2x+3\ge0\\2x-4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge2\end{cases}\Rightarrow x\ge2}\)
TH2: \(\hept{\begin{cases}2x+3\le0\\2x-4\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le\frac{-3}{2}\\x\le2\end{cases}\Rightarrow}x\le\frac{-3}{2}}\)
Vậy Bmax = 7 khi x >= 2 hoặc x <= -3/2
1.
b) \(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\)
Ta có:
\(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\ge\left(\left|x+8\right|+\left|-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left(\left|x+8-50-x\right|\right)+\left|x+18\right|\)
\(\Rightarrow B=\left|-42\right|+\left|x+18\right|\)
\(\Rightarrow B=42+\left|x+18\right|\ge42\)
\(\Rightarrow MIN_B=42\) khi và chỉ khi:
\(\left\{{}\begin{matrix}x+8\ge0\\x+18=0\\x+50\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-18\\x\ge-50\end{matrix}\right.\Rightarrow x=-18.\)
Vậy \(MIN_B=42\) khi \(x=-18.\)
3.
b) \(\left|x-3\right|-\left|2x+1\right|=0\)
\(\Rightarrow\left|x-3\right|=\left|2x+1\right|\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2x=1+3\\x+2x=\left(-1\right)+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=4\\3x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4:\left(-1\right)\\x=2:3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-4;\frac{2}{3}\right\}.\)
Chúc bạn học tốt!
2x+3-|3-2x| (1)
TH1: 3-2x \(\ge0\)\(\Leftrightarrow|3-2x|=3-2x\)
(1) \(\Leftrightarrow\)2x+3-3+2x=4x
Vì 3-2x\(\ge\)0\(\Rightarrow\)-2x\(\ge\)-3\(\Leftrightarrow\)x\(\ge\frac{3}{2}\)
\(\Rightarrow4x\ge6\)
TH2:3-2x<0\(\Leftrightarrow\)|3-2x|=2x-3
(1)\(\Leftrightarrow\)2x+3-2x+3=6
Vậy GTLN 2x+3-|3-2x|=6
a)
\(A=\left|2,3-x\right|+2,4\)
mà \(\left|2,3-x\right|\ge0\forall x\Rightarrow A\ge2,4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2,3-x=0\Leftrightarrow x=2,3\)
b)
\(B=5,5-\left|2x-\frac{3}{2}\right|\)
mà \(\left|2x-\frac{3}{2}\right|\ge0\forall x\Rightarrow B\le5,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Câu 1 :
\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-3\right|=3\)
Dấu "=" xảy ra
TH1: \(\Leftrightarrow\hept{\begin{cases}3x-5>0\\2-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{3}\\x< \frac{2}{3}\end{cases}\Rightarrow}\frac{5}{3}< x< \frac{2}{3}\left(\text{loại}\right)}\)
TH2: \(\Leftrightarrow\hept{\begin{cases}3x-5< 0\\2-3x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{3}\\x>\frac{2}{3}\end{cases}\Rightarrow}\frac{2}{3}< x< \frac{5}{3}\left(\text{thỏa mãn}\right)}\)
Vậy Bmin = 3 <=> 2/3 < x < 5/3
Câu 2 :
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-23\right|=23\)
Dấu "=" xảy ra
TH1 : \(\Leftrightarrow\hept{\begin{cases}2x-20>0\\2x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>10\\x>\frac{-3}{2}\end{cases}}\Rightarrow x>10\)
TH2: \(\Leftrightarrow\hept{\begin{cases}2x-20< 0\\2x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 10\\x< \frac{-3}{2}\end{cases}\Rightarrow}}x< \frac{-3}{2}\)
Vậy Cmax = 23 <=> 2 t/h ( ko chắc )
\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-5+2\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3x-5\right)\left(2-3x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5\ge0\\2-3x\le0\end{cases}}\) hoặc \(\hept{\begin{cases}3x-5\le0\\2-3x\ge0\end{cases}}\)
Giải ra ta được: \(\Leftrightarrow\frac{2}{3}\le x\le\frac{5}{3}\)
Vậy Bmin = 3 khi và chỉ khi \(\frac{2}{3}\le x\le\frac{5}{3}\)
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-20-3\right|=23\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}2x-20\ge2x+3\ge0\\2x-20\le2x+3\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge10;x\ge\frac{-3}{2}\\x\le10;x\le\frac{-3}{2}\end{cases}}\)
Vậy Cmax = 17 khi và chỉ khi ....
Áp dungk KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|2x-3\right|\ge0\)\(\forall\)\(x\)
nên : \(5,5-\left|2x-3\right|\ge5,5-0\)\(\forall\)\(x\)
Để \(5,5-\left|2x-3\right|\)lớn nhất thì \(\left|2x-3\right|\)phải nhỏ nhất
\(\Leftrightarrow\)\(\left|2x-3\right|=0\)
\(\Leftrightarrow\)\(2x-3=0\)
\(\Leftrightarrow\)\(2x=3\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Vậy GTLN của \(5,5-\left|2x-3\right|\)đạt được bằng \(5,5\)khi \(x=\frac{3}{2}\)