Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^2+3y^2+2xy-10x-14y+18=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-10x-10y+25+\left(2y^2-4y+2\right)-9=0\)
\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2\left(y^2-2y+1\right)=9\)
\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)
Vì \(2\left(y-1\right)^2\ge0\forall y\)nên \(\left(x+y-5\right)^2\le9\)hay \(\left(M-5\right)^2\le9\)
\(\Rightarrow-3\le M-5\le3\Leftrightarrow2\le M\le8\)
- \(Min_M=2\)khi \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
- \(Max_M=8\)khi\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)
C\(=-1892+2x^2+y^2-2xy+10x\)
\(=\left(x-y\right)^2+\left(x+5\right)^2-1917\ge-1917\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+5\right)^2=0\end{cases}}\Rightarrow x=y=-5\)
Vậy min C=-1917 khi x=y=-5
\(x^2-2xy+y^2+x^2-10x+25=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=5\end{cases}}\)
vậy \(y=5\) va\(x=5\)
\(2x^2+y^2-2xy-10x+25=0\)
\(\Leftrightarrow(x^2-2xy+y^2)+\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-5\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\Rightarrow x=5\\x-y=5\Rightarrow y=5\end{cases}}\)
\(x^2+y^2+26+10x+2y=0\)
\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)