![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2x^2+2x+5=2\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)+5-\frac{2}{4}\)
\(=2\left[\left(x+\frac{1}{2}\right)^2\right]+\frac{9}{2}\)
=> Giá trị nhỏ nhất của biểu thức bằng \(\frac{9}{2}\) khi \(x=-\frac{1}{2}\)
b) Biểu thức câu b trái dấu với biểu thức câu a nên ta suy ra giá trị lớn nhất của biểu thức câu b là \(-\frac{9}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
2x - 2x2 - 5
= -2( x2 - x + 1/4 ) - 9/2
= -2( x - 1/2 )2 - 9/2 ≤ -9/2 ∀ x
Dấu "=" xảy ra <=> x = 1/2
Vậy GTLN của biểu thức = -9/2 <=> x = 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) với mọi x
=> (x-1)^2 +4 \(\ge\) vợi mọi x
Pmin=4 <=> x-1=0 <=>x=1
1.
b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)
\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)
Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm GTNN
Câu 1 :
\(C=2x^2-5x+1\)
\(C=2\left(x^2-\frac{5}{2}x+\frac{1}{2}\right)\)
\(C=2\left(x^2-2\cdot x\cdot\frac{5}{4}+\frac{25}{16}-\frac{17}{16}\right)\)
\(C=2\left[\left(x-\frac{5}{4}\right)^2-\frac{17}{16}\right]\)
\(C=2\left(x-\frac{5}{4}\right)^2-\frac{17}{8}\ge\frac{-17}{8}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)
Câu 2 :
\(D=x^2+2x+y^2-8y-4\)
\(D=x^2+2\cdot x\cdot1+1^2+y^2-2\cdot y\cdot4+4^2-21\)
\(D=\left(x+1\right)^2+\left(y-2\right)^2-21\ge-21\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Tìm GTLN :
Câu 1 :
\(C=-2x^2+2x-1\)
\(C=-2\left(x^2-x+\frac{1}{2}\right)\)
\(C=-2\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)
\(C=-2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]\)
\(C=-2\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)
\(C=-\frac{1}{2}-2\left(x-\frac{1}{2}\right)^2\le-\frac{1}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Câu 2 :
\(D=-x^2-y^2-x+y-4\)
\(D=-\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{2}\)
\(D=-\left(x+\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2-\frac{7}{2}\)
\(D=\frac{-7}{2}-\left[\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2\right]\le\frac{-7}{2}\forall x;y\)
Dấu "=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(A=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\)
Dấu = khi \(x=2\)
Vậy MaxA=7 khi \(x=2\)
b)\(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu = khi \(x=\frac{1}{2}\)
Vậy MaxB=\(\frac{1}{4}\)khi \(x=\frac{1}{2}\)
\(A=4x-x^2+3=7-x^2+4x-4=7-\left(x-2\right)^2\le7\)
\(MaxA=7\Leftrightarrow x=2\)
\(B=x-x^2=\frac{5}{4}-x^2+x-\frac{1}{4}=\frac{5}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{5}{4}\)
\(MaxB=\frac{5}{4}\Leftrightarrow x=\frac{1}{2}\)
\(N=2x-2x^2-5=-\frac{9}{2}-2x^2+2x-\frac{1}{2}=-\frac{9}{2}-2\left(x-\frac{1}{4}\right)^2\le-\frac{9}{2}\)
\(MaxN=-\frac{9}{2}\Leftrightarrow x=\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,sửa x8 thành x2
\(A=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+2\right)^2+21\le21\)
Dấu "=" xảy ra khi x+2=0 <=> x=-2
Vậy Amax = 21 khi x = -2
b,\(B=5-x^2+2x-4y^2-4y=-\left(x^2+2x+1\right)-\left(4y^2+4y+1\right)+7=-\left(x+1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy Bmax = 7 khi x=-1,y=-1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=-x.\left(x-2x\right)+3\)
\(-x.\left(-x\right)+3\le3\)
=> GTLN của M là 3 khi -x.(-x)=0 hay khi x=0
câu N mk chịu :>
\(2x-2x^2-5=-2\left(x^2-x+\frac{5}{2}\right)\)
\(=-2\left(x^2-x+\frac{1}{4}+\frac{9}{4}\right)=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\forall x\)
Vậy GTLN là -9/2 tại -2(x-1/2)^2 =0=>x=1/2
\(-2\left(x^2-x+\frac{5}{2}\right)=-2\left(x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{9}{4}\right)\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
vay GTLN cua bt la \(\frac{-9}{2}khix=\frac{1}{2}\)