\(A=\frac{8x+3}{4x^2+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Tách các hạng tử ở tử sao cho có cùng một nhóm giống mẫu. Khi đó, thì bài dễ rồi!

1 tháng 5 2018

M=(8x+3)/(4x^2+1) 
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1) 
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1 
=> min M = -1 khi x = -1 
mặt khác: 
M = -1 + (2x +2)^2/(4x^2 +1) 
M = 4 - 5 + (2x +2)^2/(4x^2 +1) 
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1) 
M = 4 - (16x^2 - 8x +1)/(4x^2 +1) 
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4 
=> max M = 4 khi x = 1/4 

NV
14 tháng 5 2020

\(A=\frac{4x^2+8x+4-\left(4x^2+1\right)}{4x^2+1}=\frac{\left(2x+2\right)^2}{4x^2+1}-1\ge-1\)

\(A_{min}=-1\) khi \(x=-1\)

\(A=\frac{16x^2+4-\left(16x^2-8x+1\right)}{4x^2+1}=4-\frac{\left(4x-1\right)^2}{4x^2+1}\le4\)

\(A_{max}=4\) khi \(x=\frac{1}{4}\)

29 tháng 11 2017

\(A=8x^2-4x+\frac{1}{4x^2}+2015\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(2x-1\right)^2+2014\)

Áp dụng bđt AM - GM ta có : \(4x^2+\frac{1}{4x^2}\ge2\sqrt{4x^2.\frac{1}{4x^2}}=2\)

\(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)\ge2\)

\(\Rightarrow A=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\ge2016\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x^2=\frac{1}{4x^2}\\\left(2x-1\right)^2=0\end{cases}}\) \(\Rightarrow x=\frac{1}{2}\)

Vậy \(A_{min}=2016\) tại \(x=\frac{1}{2}\)

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

29 tháng 9 2019

\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)

\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)

Đẳng thức xảy ra khi x =0

Tí làm tiếp

29 tháng 9 2019

c)Đề sai:v

d) ĐK: \(x\ne1\). Bài này chỉ có min thôi nha!

\(D=\frac{3x^2-8x+6-2x^2+4x-2}{x^2-2x+1}+\frac{2\left(x^2-2x+1\right)}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\ge2\)

Đẳng thức xảy ra khi x = 2

25 tháng 8 2016

1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)

Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)

Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5

2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)

\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của B là 8 khi x = 2

2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)

\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)

Đẳng thức xảy ra khi: 4x + 1 = 0  => x = -0,25

Vậy giá trị lớn nhất của C là 5 khi x = -0,25

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

27 tháng 10 2019

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(