Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=(8x+3)/(4x^2+1)
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1)
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1
=> min M = -1 khi x = -1
mặt khác:
M = -1 + (2x +2)^2/(4x^2 +1)
M = 4 - 5 + (2x +2)^2/(4x^2 +1)
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1)
M = 4 - (16x^2 - 8x +1)/(4x^2 +1)
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4
=> max M = 4 khi x = 1/4
\(A=\frac{4x^2+8x+4-\left(4x^2+1\right)}{4x^2+1}=\frac{\left(2x+2\right)^2}{4x^2+1}-1\ge-1\)
\(A_{min}=-1\) khi \(x=-1\)
\(A=\frac{16x^2+4-\left(16x^2-8x+1\right)}{4x^2+1}=4-\frac{\left(4x-1\right)^2}{4x^2+1}\le4\)
\(A_{max}=4\) khi \(x=\frac{1}{4}\)
\(A=8x^2-4x+\frac{1}{4x^2}+2015\)
\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\)
\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(2x-1\right)^2+2014\)
Áp dụng bđt AM - GM ta có : \(4x^2+\frac{1}{4x^2}\ge2\sqrt{4x^2.\frac{1}{4x^2}}=2\)
\(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)\ge2\)
\(\Rightarrow A=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\ge2016\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x^2=\frac{1}{4x^2}\\\left(2x-1\right)^2=0\end{cases}}\) \(\Rightarrow x=\frac{1}{2}\)
Vậy \(A_{min}=2016\) tại \(x=\frac{1}{2}\)
a) \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)
b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được
\(B=4x^2+4x+11\)
\(=4\left(x^2+x+\frac{11}{4}\right)\)
\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)
\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)
\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
c) Tìm GTLN nhé
\(C=5-8x-x^2\)
\(=-x^2-2.x.4-16+16+5\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)
Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-4\)
Vậy\(C_{max}=21\Leftrightarrow x=-4\)
A = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
B = 4x2 + 4x + 11
= ( 4x2 + 4x + 1 ) + 10
= ( 2x + 1 )2 + 10 ≥ 10 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = 5 - 8x - x2
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxC = 21 <=> x = -4
\(A=\left[\left(2x\right)^2+2.2x.y+y^2\right]+\left(16y^2-8y+1\right)\)
\(=\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(x=-\frac{1}{8};y=\frac{1}{4}\)
\(B=\frac{2x^2-\left(x^2+2\right)}{x^2+2}=\frac{2x^2}{x^2+2}-2\ge-1\)
Đẳng thức xảy ra khi x =0
Tí làm tiếp
1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)
Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)
Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5
2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)
\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)
Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của B là 8 khi x = 2
2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)
\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)
Đẳng thức xảy ra khi: 4x + 1 = 0 => x = -0,25
Vậy giá trị lớn nhất của C là 5 khi x = -0,25
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
Tách các hạng tử ở tử sao cho có cùng một nhóm giống mẫu. Khi đó, thì bài dễ rồi!