K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

A=(2x)2+2.2x.\(\frac{7}{4}\)+\(\frac{49}{16}-\frac{49}{16}+13\)=(2x+7/2)2+159/16

ta co (2x+7/2)2> hoac bang 0

--> (2x+7/2)2+159/16> hoac bang 159/16

vay A dat gia tri nn la 159/16 khi x=-7/4

B= x2-2x.4+16-16+5=(x-4)2-11

ta co (x-4)2 > hoac bang 0

==> (x-4)2-11> hoac bang -11

vay B dat gtnn la -11 khi x=4

 

 

3 tháng 4 2019

c1 a) 2019

b) 4

b) Thay x=-1; y=1 và z=-2 vào B, ta được:

\(B=\dfrac{3\cdot\left(-1\right)\cdot1\cdot\left(-2\right)-2\cdot\left(-2\right)^2}{\left(-1\right)^2+1}=\dfrac{6-8}{1+1}=\dfrac{-2}{2}=-1\)

12 tháng 9 2021

\(A=x^2+y^2-8x-y+68=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\)

\(minA=\dfrac{207}{4}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(A=x^2-8x+y^2-y+68\)

\(=x^2-8x+16+y^2-y+\dfrac{1}{4}+\dfrac{207}{4}\)

\(=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\forall x,y\)

Dấu '=' xảy ra khi x=4 và \(y=\dfrac{1}{2}\)

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`

2 tháng 9 2020

A = x2 + 4x + 9

= ( x2 + 4x + 4 ) + 5

= ( x + 2 )2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 5 <=> x = -2

B = x2 + 6x + 12

= ( x2 + 6x + 9 ) + 3

= ( x + 3 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinB = 3 <=> x = -3

C = x2 + 3x + 6

= ( x2 + 3x + 9/4 ) + 15/4

= ( x + 3/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2

=> MinC = 15/4 <=> x = -3/2

D = x2 + 5x + 10

= ( x2 + 5x + 25/4 ) + 15/4

= ( x + 5/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinD = 15/4 <=> x = -5/2

E = 2x2 + 7x + 5

= 2( x2 + 7/2x + 49/16 ) - 9/8

= 2( x + 7/4 )2 - 9/8 ≥ -9/8 ∀ x

Đẳng thức xảy ra <=> x + 7/4 = 0 => x = -7/4

=> MinE = -9/8 <=> x = -7/4

F = 3x2 + 8x + 9

= 3( x2 + 8/3x + 16/9 ) + 11/3

= 3( x + 4/3 )2 + 11/3 ≥ 11/3 ∀ x

Đẳng thức xảy ra <=> x + 4/3 = 0 => x = -4/3

=> MinF = 11/3 <=> x = -4/3

23 tháng 7 2017

a, GTLN:10

b,GTLN:-5

23 tháng 7 2017

le minh vu sai roi

Ta có :
|7x - 5y| ≥ 0 
|2z - 3x| ≥ 0 
|xy + yz + zx - 2000| ≥ 0 
t² - t + 2014 = t² - 2t.(1/2) + 1/4 + 8055/4 = (t - 1/2)² + 8055/4 ≥ 8055/4 
Do đó: 
P = |7x-5y| + |2z-3x| + |xy+yz+zx-2000| + t^2 - t + 2014 ≥ 8055/4 
Suy ra 
Min P = 8055/4 giá trị đạt được khi 
{ 7x - 5y = 0 
{ 2z - 3x = 0 
{ xy + yz + zx - 2000 = 0 
{ (t - 1/2)² = 0 ---> t = 1/2 
Phương trình 1 ---> y = 7x/5 
Phương trình 2 ---> z = 3x/2 
Thay vào pt 3 được (7x²/5) + (21x²/10) + (3x²/2) = 2000 
<=> x² = 400 <=> x = ± 20 
Như vậy sẽ có 2 bộ (x, y, z, t) làm P nhỏ nhất là (± 20 ; ± 28 ; ± 30 ; 1/2)

6 tháng 1 2019

Ta có |7x – 5y|  0;  |2z – 3x| 0 và | xy + yz + zx - 2000|  0

Nên A = |7x – 5y| + |2z – 3x| +|xy + yz + zx - 2000| 0

Mà A = 0 khi và chỉ khi

|7x – 5y| = |2z – 3x| = |xy + yz + zx - 2000| = 0

Có: |7x – 5y| = 0 ó 7x = 5y ó  

 |2z – 3x| = 0 ó  

|xy + yz + zx - 2000| = 0 ó xy + yz + zx = 2000

Từ đó tìm được  

A  0, mà A = 0 ó (x,y,z) = (20;28;30) hoặc (x,y,z)= (-20;-28;-30)

Vậy MinA = 0 ó (x,y,z) = (20;28;30) hoặc (x,y,z)= (-20;-28;-30)