Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
ĐKXĐ: \(x\ge0;x\ne1\)
\(A=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)\)
\(=\sqrt{x}\left(1-\sqrt{x}\right)\)
\(0< x< 1\Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\Rightarrow A>0\)
\(A< 0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)< 0\Leftrightarrow1-\sqrt{x}< 0\Rightarrow x>1\)
\(A>-2\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)+2>0\Leftrightarrow-x+\sqrt{x}+2>0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)>0\Leftrightarrow2-\sqrt{x}>0\Rightarrow x< 4\)
Kết hợp ĐKXĐ \(\Rightarrow\left\{{}\begin{matrix}0\le x< 4\\x\ne1\end{matrix}\right.\)
\(A< -2x\Leftrightarrow\sqrt{x}-x< -2x\Leftrightarrow x+\sqrt{x}< 0\) (vô nghiệm \(\forall x\ge0\))
\(A>2\sqrt{x}\Leftrightarrow\sqrt{x}-x>2\sqrt{x}\Leftrightarrow x+\sqrt{x}< 0\) giống như trên
\(A=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(A_{max}=\frac{1}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)
\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)
c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
Vậy \(x>4\)thì \(R>0\)
2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)
Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)
3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)
b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)
Tất cả các biểu thức này đều ko tồn tại max mà chỉ tồn tại min
\(B=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}\ge3\sqrt[3]{\frac{4x^2}{4x^2}}=3\)
Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{4}{x^2}\Leftrightarrow x=2\)
\(C=x^2+\frac{1}{x}+\frac{1}{x}\ge3\sqrt[3]{\frac{x^2}{x^2}}=3\)
Dấu "=" xảy ra khi \(x^2=\frac{1}{x}\Leftrightarrow x=1\)
\(D=9x^2+\frac{2}{3x}+\frac{2}{3x}\ge3\sqrt[3]{\frac{36x^2}{9x^2}}=3\sqrt[3]{4}\)
Dấu "=" xảy ra khi \(9x^2=\frac{2}{3x}\Leftrightarrow x=\frac{\sqrt[3]{2}}{3}\)
Có: \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right]=0\)
\(\Leftrightarrow x+y=-2\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=-\frac{2}{xy}\le-\frac{2}{\frac{\left(x+y\right)^2}{4}}=-2\)
Dấu '=' xảy ra khi: \(x=y=-1\)
Vậy:....
Bạn Nguyễn Đức Thắng làm đúng rồi. Tuy nhiên bạn làm tắt quá.
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4\)
= \(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y\right)+2\)
= \(\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)\)
= \(\left[\left(x+1\right)+\left(y+1\right)\right]\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)\)
= \(\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)\)
= \(\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]\)
= \(\left(x+y+2\right)\left[\left(x+1\right)^2-2.\left(x+1\right).\frac{1}{2}\left(y+1\right)+\frac{1}{4}\left(y+1\right)^2+\frac{3}{4}\left(y+1\right)^2+1\right]\)
= \(\left(x+y+2\right)\left\{\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1\right\}\)
Biểu thức trên bằng 0 khi x + y + 2 = 0, lý luận tiếp theo như của bạn Nguyen Duc Thang
\(C=-x^2+5x-\left(\frac{5}{2}\right)^2+\left(\frac{5}{2}\right)^2\)
\(C=\left[-x^2+5x-\left(\frac{5}{2}\right)^2\right]+\left(\frac{5}{2}\right)^2\)
\(C=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]+\frac{25}{4}\)
\(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0\Leftrightarrow-\left(x-\frac{5}{2}\right)^2\le0\)
\(\Rightarrow C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy \(GTNN_C=\frac{25}{4}\)tại \(x=\frac{5}{2}\)