Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\frac{3}{4}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{cases}}\)
- \(cosx=\frac{1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
- \(cosx=\frac{-1}{2}\):
\(tanx=\frac{sinx}{cosx}=\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}=-\sqrt{3}\)
\(tanx.cotx=1\Rightarrow cotx=\frac{1}{tanx}=\frac{1}{-\sqrt{3}}=\frac{-\sqrt{3}}{3}\)
b) Bạn làm tương tự câu a) nha.
a) có tan x . cot x = 1
PT viết lại : tan x + 1/tan x = 2
=> tan2x + 1 - 2tan x =0
tiếp theo bạn giải phương trình tìm tan
b) có sin x = \(\sqrt{1-\cos^2x}\)
Thế vào có : \(\sqrt{1-\cos^2x}=\frac{\sqrt{3}}{4}\)
\(\Rightarrow1-\cos^2x=\frac{3}{16}\left(-1\le\cos x\le1\right)\)
tính cos
để tìm x thì bạn tính bằng máy casio hay vinacal cx được
SHIFT + sin (số bạn mới tính) //[cos hay tan gì đó ]
=> máy sẽ hiện ra kết quả
=> ấn nút có chữ B đỏ để đổi ra độ
1: \(=\dfrac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}\)
\(=\dfrac{\dfrac{1}{cotx}+cotx+2}{2+tanx+cotx}\)
\(=1\)
2: \(VT=\dfrac{cos^2x+cosxsinx+sin^2x-sinx\cdot cosx}{sin^2x-cos^2x}\)
\(=\dfrac{1}{sin^2x-cos^2x}\)
\(VP=\dfrac{1+cot^2x}{1-cot^2x}=\left(1+\dfrac{cos^2x}{sin^2x}\right):\left(1-\dfrac{cos^2x}{sin^2x}\right)\)
\(=\dfrac{1}{sin^2x}:\dfrac{sin^2x-cos^2x}{sin^2x}=\dfrac{1}{sin^2x-cos^2x}\)
=>VT=VP
A = (tan + cot)2 - (tan - cot)2 = 2tan×2cot = 4
B = sin6 + cos6 + 3sin2 + cos2
= (sin2 + cos2)(sin4 - sin2 cos2 + cos4) 3sin2 + cos2
= (sin2 + cos2)2 - 3sin2 cos2 + 3sin2 + cos2
= 3sin2 (1 - cos2) + 1 + cos2
= 3sin4 + 1 + cos2
Có thể câu B bạn chép sai đề. Đề đúng là
B = sin6 + cos6 + 3sin2 cos2
= (sin2 + cos2)(sin4 - sin2 cos2 + cos4) 3sin2 cos2
= (sin2 + cos2)2 - 3sin2 cos2 + 3sin2 cos2 = 1
1 ) tanx+1/tanx =2 <=> tan^2x+1=tanx <=> (tanx-1)^2=0 <=> tanx=1 <=> x= pi/4+k.pi
a) \(\dfrac{1}{1+tan\alpha}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{1+\dfrac{1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{1}{\dfrac{cot\alpha+1}{cot\alpha}}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha}{cot\alpha+1}+\dfrac{1}{1+cot\alpha}\)
\(=\dfrac{cot\alpha+1}{cot\alpha+1}=1\) (đpcm)
b) \(tan^2x+cot^2x+2\)
\(=\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}+2\)
\(=\dfrac{sin^2x}{cos^2x}+1+\dfrac{cos^2x}{sin^2x}+1\)
\(=\dfrac{sin^2x+cos^2x}{cos^2x}+\dfrac{cos^2x+sin^2x}{sin^2x}\)
\(=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}\) (đpcm)
c) \(sinx.cosx.\left(1+tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.tanx\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sinx.cosx.\dfrac{sinx}{cosx}\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+cotx\right)\)
\(=\left(sinx.cosx+sin^2x\right)\left(1+\dfrac{cosx}{sinx}\right)\)
\(=sinx.cosx+cos^2x+sin^2x+sinx.cosx\)
\(=1+sin^2x.cos^2x\)
Câu cuối không biết chỗ sai, mong mọi người chỉ bảo ạ ^^