\(\lim\limits_{x\rightarrow-\infty}\frac{3x^2-5x+2}{2x-3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 2 2020

Lời giải:
\(\lim\limits_{x\to-\infty}\frac{3x^2-5x+2}{2x-3}=\lim\limits_{x\rightarrow-\infty}\frac{\frac{3}{2}x\left(2x-3\right)-\frac{1}{4}\left(2x-3\right)+\frac{5}{4}}{2x-3}=\lim\limits_{x\rightarrow-\infty}\left(\frac{3}{2}x-\frac{1}{4}+\frac{5}{4\left(2x-3\right)}\right)=\lim\limits_{x\to-\infty}\left(\frac{3}{2}x-\frac{1}{4}\right)=-\infty\)

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)

NV
15 tháng 3 2020

Bài 2:

\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)

\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)

\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)

\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)

Bài 2:

\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)

\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)

\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)

\(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)

\(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2020

Lời giải:
\(\lim\limits_{x\to-\infty}\frac{x^2-3x-2}{x^3+2x+1}=\lim\limits_{x\to-\infty}\frac{\frac{1}{x}-\frac{3}{x^2}-\frac{2}{x^3}}{1+\frac{2}{x^2}+\frac{1}{x^3}}=\frac{0}{1}=0\)

4 tháng 4 2017

a) Hàm số f(x) = xác định trên R\{} và ta có x = 4 ∈ (;+∞).

Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và xn → 4 khi n → +∞.

Ta có lim f(xn) = lim = = .

Vậy = .

b) Hàm số f(x) = xác định trên R.

Giả sử (xn) là dãy số bất kì và xn → +∞ khi n → +∞.

Ta có lim f(xn) = lim = lim = -5.

Vậy = -5.