K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2020

Sử dụng công thức tổng cấp số nhân:

\(1+3+3^2+...+3^n=\frac{3^{n+1}-1}{3-1}=\frac{3^{n+1}-1}{2}\)

\(1+4+...+4^n=\frac{4^{n+1}-1}{3}\)

\(\Rightarrow u_n=\frac{3\left(3^{n+1}-1\right)}{2\left(4^{n+1}-1\right)}=\frac{3.3^{n+1}-3}{2.4^{n+1}-2}\)

\(\Rightarrow lim\left(u_n\right)=lim\frac{3.3^{n+1}-3}{2.4^{n+1}-2}=\frac{3.\left(\frac{3}{4}\right)^{n+1}-3\left(\frac{1}{4}\right)^{n+1}}{2-2.\left(\frac{1}{4}\right)^{n+1}}=\frac{0}{2}=0\)

26 tháng 8 2023

Ta có:

\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)

\(\Rightarrow B\)

 

Chọn B

Chọn C

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta thấy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = \frac{1}{3}\) và công bội \(q = \frac{1}{3}\).

Số hạng tổng quát của dãy số là: \({u_n} = {u_1}.{q^{n - 1}} = \frac{1}{3}.{\left( {\frac{1}{3}} \right)^{n - 1}} = {\left( {\frac{1}{3}} \right)^n} = \frac{1}{{{3^n}}}\).

Chọn C.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\begin{array}{l}\lim {u_n} = \lim \left( {3 + \frac{1}{n}} \right) = \lim 3 + \lim \frac{1}{n} = 3 + 0 = 3\\\lim {v_n} = \lim \left( {5 - \frac{2}{{{n^2}}}} \right) = \lim 5 - \lim \frac{2}{{{n^2}}} = 5 - 0 = 5\end{array}\)

b)

\(\begin{array}{l}\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 5 = 8\\\lim \left( {{u_n} - {v_n}} \right) = \lim {u_n} - \lim {v_n} = 3 - 5 =  - 2\\\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.5 = 15\\\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{5}\end{array}\)

NV
4 tháng 12 2021

\(\lim\limits\left(2-3n\right)^4\left(n+1\right)^3=\lim n^7\left(3-\dfrac{2}{n}\right)^4\left(1+\dfrac{1}{n}\right)^3=+\infty\)

\(\lim\left(\sqrt[3]{n+4}-\sqrt[3]{n+1}\right)=\lim\dfrac{3}{\sqrt[3]{\left(n+4\right)^2}+\sqrt[3]{\left(n+4\right)\left(n+1\right)}+\sqrt[3]{\left(n+1\right)^2}}=0\)

\(\lim\left(\sqrt[3]{8n^3+3n^2+4}-2n+6\right)=\lim\dfrac{8n^3+3n^2+4-\left(2n-6\right)^3}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)

\(=\lim\dfrac{75n^2-216n+220}{\sqrt[3]{\left(8n^3+3n^2+4\right)^2}+\left(2n-6\right)\sqrt[3]{8n^3+3n^2+4}+\left(2n-6\right)^2}\)

\(=\lim\dfrac{75-\dfrac{216}{n}+\dfrac{220}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}+\dfrac{4}{n^3}\right)^2}+\left(2-\dfrac{6}{n}\right)\sqrt[3]{8+\dfrac{3}{n}+\dfrac{4}{n^3}}+\left(2-\dfrac{6}{n}\right)^2}\)

\(=\dfrac{75}{\sqrt[3]{8^2}+2.\sqrt[3]{8}+2^2}=...\)

NV
4 tháng 12 2021

d.

\(\lim\left(\sqrt[3]{8n^3+3n^2-2}+\sqrt[3]{5n^2-8n^3}\right)\)

\(=\lim\left(\sqrt[3]{8n^3+3n^2-2}-\sqrt[3]{8n^3-5n^2}\right)\)

\(=\lim\dfrac{8n^3+3n^2-2-\left(8n^3-5n^2\right)}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)

\(=\lim\dfrac{8n^2-2}{\sqrt[3]{\left(8n^3+3n^2-2\right)^2}+\sqrt[3]{\left(8n^3+3n^2-2\right)\left(8n^3-5n^2\right)}+\sqrt[3]{8n^3-5n^2}}\)

\(=lim\dfrac{8-\dfrac{2}{n^2}}{\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)^2}+\sqrt[3]{\left(8+\dfrac{3}{n}-\dfrac{2}{n^3}\right)\left(8-\dfrac{5}{n}\right)}+\sqrt[3]{\left(8-\dfrac{5}{n}\right)^2}}\)

\(=\dfrac{8}{\sqrt[3]{8^2}+\sqrt[3]{8.8}+\sqrt[3]{8^2}}=...\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 =  - 1 - 4n\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) =  - 1 - 4n - 3 + 4n =  - 4\)

Vậy dãy số là cấp số cộng có công sai \(d =  - 4\).

b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)

Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).

c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)

Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.

d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} =  - \frac{5}{3}\)

Vậy dãy số là cấp số cộng có công sai \(d =  - \frac{5}{3}\).

5 tháng 2 2023

Là 6

 

NV
7 tháng 2 2021

\(u_n-u_{n+1}=u_n+\left(1-u_{n+1}\right)-1\ge2\sqrt{u_n\left(1-u_{n+1}\right)}-1>0\)

\(\Rightarrow u_n>u_{n+1}\Rightarrow\) dãy giảm

Dãy giảm và bị chặn dưới bởi 0 nên có giới hạn hữu hạn.

Gọi giới hạn đó là k

\(\Rightarrow k\left(1-k\right)\ge\dfrac{1}{4}\Rightarrow\left(2k-1\right)^2\le0\Rightarrow k=\dfrac{1}{2}\)

Vậy \(\lim\left(u_n\right)=\dfrac{1}{2}\)

1 tháng 2 2021

Một câu thôi: Liên hợp

\(\dfrac{1}{2\sqrt{1}+\sqrt{2}}=\dfrac{2.1-\sqrt{2}}{2^2-2}=\dfrac{2-\sqrt{2}}{2}=1-\dfrac{1}{\sqrt{2}}\)

\(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{9.2-4.3}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(\Rightarrow\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Nên chứng minh bằng quy nạp mạnh cho chặt chẽ, giờ tui buồn ngủ quá nên bạn tự chứng minh nha :(

\(\Rightarrow u_n=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{\sqrt{n+1}-1}{\sqrt{n+1}}\Rightarrow\lim\limits\left(u_n\right)=\lim\limits\dfrac{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}-\dfrac{1}{\sqrt{n}}}{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}}=1\)