Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\left(2-m\right)x+m-1\)
Có: \(\left\{{}\begin{matrix}a=2-m\\b=m-1\end{matrix}\right.\) (ĐK: \(m\ne2\))
a) Để đồ thị (1) đi qua góc tọa độ thì: \(b=0\)
\(\Rightarrow m-1=0\)
\(\Rightarrow m=1\) (tm)
b) Để đồ thị (1) tạo với trục Ox một góc \(\partial=30^o\) thì
\(a=tan\partial\)
\(\Rightarrow2-m=tan30^o\)
\(\Rightarrow2-m=\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow m=2-\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow m=\dfrac{6-\sqrt{3}}{3}\left(tm\right)\)
c) Để đồ thị (1) tạo với trục Ox một góc \(\partial=135^o\) thì:
\(a=tan\partial\)
\(\Rightarrow2-m=tan135^o\)
\(\Rightarrow2-m=-1\)
\(\Rightarrow m=2+1\)
\(\Rightarrow m=3\left(tm\right)\)
d) Để đường thẳng (1) cắt trục tung tại điểm có tung độ là 4 thì: (đk: \(m\ne1\) vì nếu bằng 1 thì (1) sẽ đi qua gốc tọa độ)
Ta thay \(x=0\) và \(y=4\) vào (1) ta có:
\(4=\left(2-m\right)+m-1\)
\(\Rightarrow m-1=4\)
\(\Rightarrow m=4+1\)
\(\Rightarrow m=5\left(tm\right)\)
e) Để đường thẳng (1) cắt trục hành tại điểm có hoành độ bằng (-3) thì: (đk: \(m\ne1\))
Ta thay \(x=-3\) và \(y=0\) vào (1) ta có:
\(0=-3\cdot\left(2-m\right)+m-1\)
\(\Rightarrow-6+3m+m-1=0\)
\(\Rightarrow4m-7=0\)
\(\Rightarrow4m=7\)
\(\Rightarrow m=\dfrac{7}{4}\left(tm\right)\)
ĐKXĐ: x ≠ 2
a) Đồ thị của hàm số đi qua gốc tọa độ nên m - 1 = 0
⇔ m = 1 (nhận)
Vậy m = 1 thì đồ thị của hàm số đi qua gốc tọa độ
b) Do đồ thị của hàm số tạo với trục Ox một góc ∂ = 30⁰ nên:
tan30⁰ = 2 - m
⇔ 2 - m = √3/3
⇔ m = 2 - √3/3 (nhận)
Vậy m = 2 - √3/3 thì đồ thị của hàm số đã cho tạo với trục Ox một góc 30⁰
c) Do đồ thị của hàm số tạo với trục Ox một góc ∂ = 135⁰
⇒ 2 - m = tan135⁰
⇔ 2 - m = -1
⇔ -m = -1 - 2
⇔ m = 3 (nhận)
Vậy m = 3 thì đồ thị của hàm số đã cho tạo với trục Ox một góc 135⁰
d) Do đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 4 nên thay x = 0; y = 4 vào (1), ta có:
(2 - m).0 + m - 1 = 4
⇔ m = 4 + 1
⇔ m = 5 (nhận)
Vậy m = 5 thì đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 4
e) Do đường thẳng (1) cắt trục hoành tại điểm có hoành độ bằng -3 nên thay x = -3; y = 0 vào (1) ta có:
(2 - m).(-3) + m - 1 = 0
⇔ -6 + 3m + m - 1 = 0
⇔ 4m - 7 = 0
⇔ 4m = 7
⇔ m = 7/4 (nhận)
Vậy m = 7/4 thì (1) cắt trục hoành tại điểm có hoành độ bằng -3
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a: Thay x=0 và y=3 vào (d1), ta đc:
2m+1=3
=>2m=2
=>m=1
(d1): y=3
=>giao của (d1) với (d) nằm trên trục hoành
b: \(h\left(O;d1\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{\left|2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}\)
Để h lớn nhất thì m=1
a: Vì (d)//y=2x+3 nên a=2
Vậy: y=2x+b
Thay x=1 và y=-2 vào (d), ta được:
b+2=-2
hay b=-4
Vậy: (d): y=2x-4
c: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-4x+3=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{6}\\y=-\dfrac{5}{3}\end{matrix}\right.\)
d: Vì hai đường song song nên 2m-3=2
=>2m=5
hay m=5/2