K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

GTNN của C bằng 11 khi x=1/2 và y=-2

mk nha

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

9 tháng 8 2018

\(A=\left|x+12\right|+\left(y+2\right)^2+11\ge11\)

ta có \(\hept{\begin{cases}\left|x+12\right|\ge0\\\left(y+2\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left|x+12\right|+\left(y+2\right)^2+11\ge11\)

\(\Rightarrow A_{min}=11\Leftrightarrow\hept{\begin{cases}x+12=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-2\end{cases}}}\)

18 tháng 12 2018

Ta có: \(\left|x-\frac{1}{2}\right|\ge0\forall x\)

\(\left(y+2\right)^2\ge0\forall y\).

Do đó: \(A=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\)

\(\ge0+0+11=11\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)

1 tháng 1 2018

Cmin =11  \(\Leftrightarrow\)x= 1/2 và y= -2

1 tháng 1 2018
  • \(\left|x-\frac{1}{2}\right|\ge0\) ;\(\left(y+2\right)^2\ge0\Rightarrow C=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\ge11\)Dấu bằng xảy ra khi và chỉ khi x=1/2 và y=\(-2\)
     

Vậy min\(C\)=11 \(\Leftrightarrow\)x=1/2;y=-2

14 tháng 12 2020

a) Ta có: \(\left|1-2x\right|\ge0\forall x\)

\(\Rightarrow3\left|1-2x\right|\ge0\forall x\)

\(\Rightarrow3\left|1-2x\right|-5\ge-5\forall x\)

Dấu '=' xảy ra khi 1-2x=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức A=3|1-2x|-5 là -5 khi \(x=\dfrac{1}{2}\)

b) Ta có: \(2x^2\ge0\forall x\)

\(\Rightarrow2x^2+1\ge1\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4\ge1\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4-3\ge-2\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(2x^2+1\right)^4-3\) là -2 khi x=0

14 tháng 12 2020

Cảm ơn bn nhìu!!!