Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=/x-2010/+/x-2012/+/x-2014/
=/x-2012/+/2014-x/+/x-2010/>=/x-2012/+/2014-x+x-2010/=/x-2012/+4
lại có /x-2012/>=0
=>A>=4
=>min A=4 khi đó\(\hept{\begin{cases}x-2012=0\\\left(x-2012\right)\left(x-2014\right)< =0\end{cases}}< =>\hept{\begin{cases}x=2012\\2012< =x< =2014.\end{cases}}\)
=>x=2012 (tmđk)
a: \(A=-\left|3x-1\right|+0.7< =0,7\)
Dấu '=' xảy ra khi x=1/3
b: |x+0,3|+0,5>=0,5
=>B<=1/0,5=2
Dấu '=' xảy ra khi x=-0,3
c: \(C=0.5\cdot\left|0.3x-2\right|+0.7>=0.7\)
Dấu '=' xảy ra khi x=2/0,3=20/3
Đặt A=|x|+|x+8|
Vì |x| >0 hoặc bằng 0 Và |x+8|cũng >0 hoặc Bằng 0
Suy ra |x|+|x+8| luôn >0 hoặc =0
Suy ra MIN A=0 khi và chỉ khi |x|=0 và |x+8|=0
suy ra x+8=0 suy ra x= -8
\(C=\frac{2\left(x-1\right)^2+1}{x^2-2x+3}=\frac{2\left(x-1\right)^2+1}{\left(x^2-2x+1\right)+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=\frac{2\left[\left(x-1\right)^2+2\right]-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
Để \(2-\frac{3}{\left(x-1\right)^2+2}\) đạt GTNN <=> \(\left(x-1\right)^2+2\)đạt GTNN
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\) có GTNN là 2 tại x = 1
\(\Rightarrow B_{min}=2-\frac{3}{\left(1-1\right)^2+2}=\frac{1}{2}\) tại \(x=1\)
cho rõ lời giải hộ tớ được không và cho cả giá trị x,y nữa