K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Đặt \(x^{10}=a\ge0\)

Khi đó:

\(a^{10}-10a+2029\)

\(=\left(a^{10}+1+1+1+1\right)-10a+2025\)

\(\ge5\sqrt[5]{a^{10}}-10a+2025\)

\(=5a^2-10a+2025\)

\(=5\left(a^2-2a+1\right)+2020\)

\(=5\left(a-1\right)^2+2020\ge2020\)

Đẳng thức xảy ra tại x=1 hoặc x=-1

1 tháng 4 2018

HPT là gì

1 tháng 4 2018

Hệ phương trình lớp 9 ý

24 tháng 11 2021

TL
 

\(x=\frac{3}{7}\)

Xin k

Nhớ k

HT

2 tháng 10 2016

b/ N = \(\frac{\sqrt{x-25}}{10x}\) = \(\frac{1}{10}\sqrt{\frac{x-25}{x^2}}=\frac{1}{10}\sqrt{\frac{1}{x}-\frac{25}{x^2}}\)

Đặt \(\frac{1}{x}=a\)thì ta có

10N = \(\sqrt{a-25a^2}\) = \(1\sqrt{\left(-25a^2+\frac{2×5a}{2×5}-\frac{1}{100}\right)+\frac{1}{100}}\)

\(\sqrt{\frac{1}{100}-\left(5a-\frac{1}{10}\right)^2}\)

Đạt cực đại là \(\frac{1}{10}\)khi a = \(\frac{1}{50}\)hay x = 50

Vậy N đạt GTLN là \(\frac{1}{100}\)khi x = 50. Hết nợ bạn rồi nhé

1 tháng 10 2016

Máy hết pin rồi. Nên gợi ý nhá. Dùng hằng đẳng thức là ra hết

26 tháng 4 2017

\(\frac{18+10x}{\sqrt{1-x^2}}=\frac{4-4x+14+14x}{\sqrt{\left(1-x\right)\left(1+x\right)}}=\frac{4\left(1-x\right)+14\left(1+x\right)}{\sqrt{\left(1-x\right)\left(1+x\right)}}\)

Áp dụng bất đẳng thức Cauchy ta có:

\(4\left(1-x\right)+14\left(1+x\right)\ge2\sqrt{4.14\left(1-x\right)\left(1+x\right)}=4\sqrt{14}.\sqrt{\left(1-x\right)\left(1+x\right)}\)

\(\frac{18+10x}{\sqrt{1-x^2}}\ge\frac{4\sqrt{14}.\sqrt{\left(1-x\right)\left(1+x\right)}}{\sqrt{\left(1-x\right)\left(1+x\right)}}=4\sqrt{14}\)

Dấu "=" xảy ra \(\Leftrightarrow4\left(1-x\right)=14\left(1+x\right)\Leftrightarrow18x=-10\Leftrightarrow x=-\frac{5}{9}\)

26 tháng 4 2017

Tình yêu sao khác thường 
Đôi lúc ta thật kiên cường 
Nhiều người trách mình điên cuồng 
Cứ lao theo dù không lối ra 

Câu 1: 

\(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

Câu 2; 

Để A là số nguyên thì \(\left(x+2\right)⋮x^2+4\)

\(\Leftrightarrow x^2-4⋮x^2+4\)

\(\Leftrightarrow x^2+4-8⋮x^2+4\)

\(\Leftrightarrow x^2+4\in\left\{4;8\right\}\)

hay \(x\in\left\{0;2;-2\right\}\)