Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
\(\frac{5x^2-8x+8}{2x^2}=\frac{10x^2-16x+16}{4x^2}\)
\(=\frac{4x^2-16x+16+6x^2}{4x^2}=\frac{\left(2x-4\right)^2}{4x^2}+\frac{6}{4}\)\(\ge\)1,5
Dấu = xảy ra khi 2x-4= 0 => x = 2
Mk giải hơi tắt bn cố gắng suy nghĩ nha
1,A=(x2-6x+9)+2
=(x-3)2+2
ta thấy (x-3)2>=0 với mọi x
=>(x-3)2+2>=2 với mọi x
hay A>=2
dấu "="xảy ra x-3=0<=>x=3
vậy MinA=2 khi x=3
ý b sai đầu bài bạn nhé
C=-(x2-5x)
=-(x2-5x+25/4)+25/4
=-(x-5/2)2+25/4
ta thấy -(x-5/2)2<=0 với mọi x
=>-(x-5/2)2+25/4 <=25/4 với mọi x
hay C<=25/4
dấu "=" xảy ra khi x-5/2=0<=>x=5/2
vậy MaxC=25/4 khi x=5/2
k mk nha
a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4
Dấu bằng xảy ra <=>x+1=0 <=>x=-1
\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)
Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy giá trị nhỏ nhất của A là 4 khi x= -1
\(2x^2-x+5\)
\(=2\left(x^2-\frac{x}{2}+\frac{5}{2}\right)\)
\(2\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}+\frac{39}{16}\right)\)
\(=2\left[\left(x-\frac{1}{4}\right)^2+\frac{39}{16}\right]\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{39}{8}\ge\frac{39}{8}\)
Dấu '' ='' xảy ra
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2\Leftrightarrow x=\frac{1}{4}\)
Vậy........
Ta có:
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
\(\text{(x-1)^2+(x-3)}^2=x^2-2x+1+x^2-6x+9=2x^2-8x+10\)
\(=\left(2x^2-8x+8\right)+2\)
\(=2\left(x-2\right)^2+2\ge2\)
Vậy GTNN là 2 đạt được khi x = 2
2x^2-8x+10