\(\left|x-2012\right|\) + \(\left|x-2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

Ta có: \(M=\left|x-2012\right|+\left|x-2013\right|\ge\left|x-2012\right|+\left|2013-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(M\ge\left|x-2012\right|+\left|2013-x\right|\ge\left|x-2012+2013-x\right|=\left|2013-2012\right|=1\)

Dấu " = " xảy ra khi: \(x-2012\ge0;2013-x\ge0\)

\(\Rightarrow x\ge2012;x\le2013\)

Vậy \(MIN_M=1\) khi \(2012\le x\le2013\)

19 tháng 9 2016

Ta có : \(E=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|8-x\right|\right)+\left(\left|7-x\right|+\left|x+2\right|\right)\)

                \(\ge\left|x+5+8-x\right|+\left|7-x+x+2\right|=22\)

Dấu "=" xảy ra khi \(\begin{cases}-5\le x\le8\\-2\le x\le7\end{cases}\) \(\Rightarrow-2\le x\le7\)

Vậy MIN E = 22 khi \(-2\le x\le7\)

19 tháng 9 2016

Ta thấy:\(\left|3x+\frac{1}{7}\right|\ge0\)

\(\Rightarrow-\left|3x+\frac{1}{7}\right|\le0\)

\(\Rightarrow-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\le\frac{5}{3}\)

\(\Rightarrow C\le\frac{5}{3}\)

Dấu= khi \(x=-\frac{1}{7}\)

Vậy MinC=\(\frac{5}{3}\) khi \(x=-\frac{1}{7}\)

23 tháng 8 2016

hihi bài này mình học ùi nhưng ko hỉu cho a+2016 bạn về xem lại sách y 

23 tháng 8 2016

Dễ mà,bn xem lại SBT toán 6 hay là toán 7 í,mk quên rồi,lười quá không buồn đi lấy.haha

16 tháng 11 2016

Vì x tỉ lệ thuận với y theo hệ số tỉ lệ a nên x = y.a (1)

y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = z.b (2)

z tỉ lệ thuận với t theo hệ số tỉ lệ c nên z = t.c (3)

Từ (1); (2) và (3) => x = t.c.b.a

=> \(t=\frac{x}{c.b.a}=x.\frac{1}{c.b.a}\)

Vậy t tỉ lệ thuận với x và hệ số tỉ lệ là \(\frac{1}{c.b.a}\)

25 tháng 9 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

25 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

30 tháng 9 2016

\(\left(x-\frac{3}{4}\right)^3=\left(\frac{2}{3}\right)^6\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)^3=\left[\left(\frac{2}{3}\right)^2\right]^3\)

\(\Leftrightarrow x-\frac{3}{4}=\left(\frac{2}{3}\right)^2\)

\(\Leftrightarrow x=\frac{43}{36}\)

Bài1:

\(M=\dfrac{9-x}{4-x}=1+\dfrac{5}{4-x}\)

Để M đạt giá trị lớn nhất thì 4-x phải đặt giá trị nhỏ nhất

=>4-x đạt giá trị là số nguyên dương nhỏ nhất có thể

=>4-x=1

=>x=3

Thay x=3 vào M,ta có:

\(M=\dfrac{9-3}{4-3}=\dfrac{6}{1}=6\)

Vậy....

Bài2:

\(\left(x-2\right)^2+\left(2y-1\right)^2\)

Với mọi x;y thì \(\left(x-2\right)^2>=0;\left(2y-1\right)^2>=0\)

=>\(\left(x-2\right)^2+\left(2y-1\right)^2>=0\)

Để \(\left(x-2\right)^2+\left(2y-1\right)^2=0\) thì

\(\left(x-2\right)^2=0\)\(\left(2y-1\right)^2=0\)

=>\(x-2=0\)\(2y-1=0\)

=>\(x=2vay=\dfrac{1}{2}\)

Vậy....

9 tháng 9 2017

\(M=\dfrac{9-x}{4-x}=\dfrac{5+4-x}{4-x}=\dfrac{5}{4-x}+\dfrac{4-x}{4-x}=\dfrac{5}{4-x}+1\)Để \(max_M\) thì \(\dfrac{5}{x-4}\) phải là số nguyên lớn nhất có thể

Vậy \(\dfrac{5}{x-4}=5\Rightarrow x=3\)

Thay vào biểu thức:

\(max_M=\dfrac{9-3}{4-3}=6\)

\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^2+\left(2y-1\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)